This study investigates privacy leakage in dimensionality reduction methods through a novel machine learning-based reconstruction attack. Employing an \emph{informed adversary} threat model, we develop a neural network capable of reconstructing high-dimensional data from low-dimensional embeddings. We evaluate six popular dimensionality reduction techniques: PCA, sparse random projection (SRP), multidimensional scaling (MDS), Isomap, $t$-SNE, and UMAP. Using both MNIST and NIH Chest X-ray datasets, we perform a qualitative analysis to identify key factors affecting reconstruction quality. Furthermore, we assess the effectiveness of an additive noise mechanism in mitigating these reconstruction attacks.
翻译:暂无翻译