Temporal exponential random graph models (TERGM) are powerful statistical models that can be used to infer the temporal pattern of edge formation and elimination in complex networks (e.g., social networks). TERGMs can also be used in a generative capacity to predict longitudinal time series data in these evolving graphs. However, parameter estimation within this framework fails to capture many real-world properties of social networks, including: triadic relationships, small world characteristics, and social learning theories which could be used to constrain the probabilistic estimation of dyadic covariates. Here, we propose triadic temporal exponential random graph models (TTERGM) to fill this void, which includes these hierarchical network relationships within the graph model. We represent social network learning theory as an additional probability distribution that optimizes Markov chains in the graph vector space. The new parameters are then approximated via Monte Carlo maximum likelihood estimation. We show that our TTERGM model achieves improved fidelity and more accurate predictions compared to several benchmark methods on GitHub network data.
翻译:时间指数随机图模型(TERGM)是强大的统计模型,可用于推断复杂网络(例如社交网络)中边缘形成和消除的时间模式。TERGM也可以在基因化能力中用于预测这些演变中的图表的纵向时间序列数据。然而,这一框架内的参数估计未能捕捉到社会网络的许多真实世界特性,包括:三重关系、小世界特征和社会学习理论,可用于限制对dyadic 共变体的概率估计。在这里,我们提议三重时间指数随机图表模型(TTERGM)填补这一空白,其中包括图形模型中的这些等级网络关系。我们把社会网络学习理论作为额外概率分布,优化了图形矢量空间中的Markov链。然后通过MonteCarlo的最大可能性估计,对新的参数进行了近似。我们显示,我们的TTERGM模型与GHub网络数据的一些基准方法相比,实现了更高的真实性和更准确的预测。