Divergence-free discontinuous Galerkin (DG) finite element methods offer a suitable discretization for the pointwise divergence-free numerical solution of Borrvall and Petersson's model for the topology optimization of fluids in Stokes flow [Topology optimization of fluids in Stokes flow, International Journal for Numerical Methods in Fluids 41 (1) (2003) 77--107]. The convergence results currently found in literature only consider H^1-conforming discretizations for the velocity. In this work, we extend the numerical analysis of Papadopoulos and Suli to divergence-free DG methods with an interior penalty [I. P. A. Papadopoulos and E. Suli, Numerical analysis of a topology optimization problem for Stokes flow, arXiv preprint arXiv:2102.10408, (2021)]. We show that, given an isolated minimizer of the infinite-dimensional problem, there exists a sequence of DG finite element solutions, satisfying necessary first-order optimality conditions, that strongly converges to the minimizer.
翻译:文献中目前发现的无异不相干 Galerkin (DG) 有限元素方法为Borrvall 和Petersson的 Stokes 流流流液体[Stokes 流流液体的理学优化模型[Stokes 流流液体的理学优化,《国际流体内数字方法杂志》41(1)(2003年) 77-107) 提供了一种适合的分解方法。 文献中目前发现的趋同结果只考虑到速度的H-1-同异化。 在这项工作中,我们对Papadopoulos 和 Suli 的数值分析扩大到带有内部惩罚的无差异DG方法[I. P. A. Papadopoulos 和 E. Suli, Stokes 流流的理学优化问题数值分析, arXiv 预印: 2102.10408(2021 ) 。我们显示,鉴于无限维度问题的孤立的最小性最小性最小性最小性,存在着一系列DG 定元素解决方案,满足了必要的第一阶最佳性条件,与最小性最优化条件。