Vision Transformers (ViTs) have recently become the state-of-the-art across many computer vision tasks. In contrast to convolutional networks (CNNs), ViTs enable global information sharing even within shallow layers of a network, i.e., among high-resolution features. However, this perk was later overlooked with the success of pyramid architectures such as Swin Transformer, which show better performance-complexity trade-offs. In this paper, we present a simple and efficient add-on component (termed GrafT) that considers global dependencies and multi-scale information throughout the network, in both high- and low-resolution features alike. GrafT can be easily adopted in both homogeneous and pyramid Transformers while showing consistent gains. It has the flexibility of branching-out at arbitrary depths, widening a network with multiple scales. This grafting operation enables us to share most of the parameters and computations of the backbone, adding only minimal complexity, but with a higher yield. In fact, the process of progressively compounding multi-scale receptive fields in GrafT enables communications between local regions. We show the benefits of the proposed method on multiple benchmarks, including image classification (ImageNet-1K), semantic segmentation (ADE20K), object detection and instance segmentation (COCO2017). Our code and models will be made available.


翻译:视觉变异器(ViTs)最近已成为许多计算机愿景任务中最先进的技术。 与革命网络(CNNs)相比,ViTs使得全球信息共享甚至在网络浅层(即高分辨率特征)中得以实现。 但是,由于Swin变异器等金字塔结构的成功,这一福利后来被忽略了,因为Swin变异器显示出更好的性能和兼容性取舍。 在本文件中,我们提出了一个简单而高效的附加部分(GrafT),它考虑到全球依赖性和整个网络的多尺度信息,包括高分辨率和低分辨率特征。GrafT可以很容易地在单一和金字塔变异器中被采用,同时显示一致的收益。它具有在任意深度进行分流的灵活性,以多种尺度扩大网络。这种变形操作使我们能够分享大部分主干线参数和计算,只增加最小的复杂度,但收益更高。 事实上,在GrafT中逐步复合多尺度可接受的域域(GrafT),包括高分辨率特征特性特征的特性模型,我们展示了多种基准段(CO)的域域域域域域的识别图段和SeADE。 我们展示了“SADADADADADADADADADAD”的可提供的分级图图段,包括了“SDADADADADADADADAD17”的图图图图图段。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
29+阅读 · 2021年7月30日
最新《Transformers模型》教程,64页ppt
专知会员服务
305+阅读 · 2020年11月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
17+阅读 · 2022年2月23日
Arxiv
15+阅读 · 2022年1月24日
Arxiv
39+阅读 · 2021年11月11日
Arxiv
19+阅读 · 2021年4月8日
Arxiv
19+阅读 · 2020年12月23日
Arxiv
15+阅读 · 2020年2月5日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关论文
Arxiv
17+阅读 · 2022年2月23日
Arxiv
15+阅读 · 2022年1月24日
Arxiv
39+阅读 · 2021年11月11日
Arxiv
19+阅读 · 2021年4月8日
Arxiv
19+阅读 · 2020年12月23日
Arxiv
15+阅读 · 2020年2月5日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员