Open-world instance segmentation (OWIS) aims to segment class-agnostic instances from images, which has a wide range of real-world applications such as autonomous driving. Most existing approaches follow a two-stage pipeline: performing class-agnostic detection first and then class-specific mask segmentation. In contrast, this paper proposes a single-stage framework to produce a mask for each instance directly. Also, instance mask annotations could be noisy in the existing datasets; to overcome this issue, we introduce a new regularization loss. Specifically, we first train an extra branch to perform an auxiliary task of predicting foreground regions (i.e. regions belonging to any object instance), and then encourage the prediction from the auxiliary branch to be consistent with the predictions of the instance masks. The key insight is that such a cross-task consistency loss could act as an error-correcting mechanism to combat the errors in annotations. Further, we discover that the proposed cross-task consistency loss can be applied to images without any annotation, lending itself to a semi-supervised learning method. Through extensive experiments, we demonstrate that the proposed method can achieve impressive results in both fully-supervised and semi-supervised settings. Compared to SOTA methods, the proposed method significantly improves the $AP_{100}$ score by 4.75\% in UVO$\rightarrow$UVO setting and 4.05\% in COCO$\rightarrow$UVO setting. In the case of semi-supervised learning, our model learned with only 30\% labeled data, even outperforms its fully-supervised counterpart with 50\% labeled data. The code will be released soon.


翻译:开放世界区块( OWIS ) 的目的是从图像中分解类类认知性实例, 图像中包含大量真实世界应用, 如自主驱动等。 大多数现有方法都遵循两阶段管道: 先进行类认知性检测, 然后再进行类特定遮罩分割。 相反, 本文建议了一个单阶段框架, 直接为每个实例生成一个掩码。 此外, 实例掩码说明可能在现有数据集中很吵; 为了克服这一问题, 我们引入一个新的正规化损失。 具体地说, 我们首先训练一个额外的分支, 来完成预测地表区域( 即属于任何对象实例的区域) 的辅助任务, 然后鼓励辅助分支部门的预测与实例掩码的预测保持一致 。 关键洞察力是, 这样跨任务一致性损失可以作为一个错误校正机制, 克服说明中的错误。 此外, 我们发现拟议的跨任务一致性损失可以在不作任何说明的情况下应用图像, 将自己借给一个半监督的学习方法。 通过广泛的实验, 我们证明拟议的方法可以实现令人印象深刻的 OVO 75 内部的 标准, 通过完全地标值 数据设置 。

0
下载
关闭预览

相关内容

专知会员服务
35+阅读 · 2021年7月7日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月3日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员