Building reliable machine learning systems requires that we correctly understand their level of confidence. Calibration focuses on measuring the degree of accuracy in a model's confidence and most research in calibration focuses on techniques to improve an empirical estimate of calibration error, ECE_bin. Using simulation, we show that ECE_bin can systematically underestimate or overestimate the true calibration error depending on the nature of model miscalibration, the size of the evaluation data set, and the number of bins. Critically, ECE_bin is more strongly biased for perfectly calibrated models. We propose a simple alternative calibration error metric, ECE_sweep, in which the number of bins is chosen to be as large as possible while preserving monotonicity in the calibration function. Evaluating our measure on distributions fit to neural network confidence scores on CIFAR-10, CIFAR-100, and ImageNet, we show that ECE_sweep produces a less biased estimator of calibration error and therefore should be used by any researcher wishing to evaluate the calibration of models trained on similar datasets.
翻译:建立可靠的机器学习系统要求我们正确理解其信任度。校准的重点是测量模型信任度的准确度,大多数校准研究侧重于改进校准错误经验估计的技术,ECE_bin。我们通过模拟,显示ECE_bin可以系统地低估或高估校准误差,这取决于模型校准的性质、评价数据集的大小和垃圾箱的数量。关键是,ECE_bin对校准精确度模型偏差较大。我们建议采用简单的校准误差标准,ECE_bin,其中选取了尽可能多的箱,同时在校准功能中保持单调。评估我们关于适合CIRA-10、CIFAR-100和图像网络神经网络信任分数的分布,我们表明ECE_webyer生成的校准误差估计器不那么偏差,因此,任何希望评价类似数据集所训练模型校准的研究人员都应该使用。