Causal inference relies on two fundamental assumptions: ignorability and positivity. We study causal inference when the true confounder value can be expressed as a function of the observed data; we call this setting estimation with functional confounders (EFC). In this setting, ignorability is satisfied, however positivity is violated, and causal inference is impossible in general. We consider two scenarios where causal effects are estimable. First, we discuss interventions on a part of the treatment called functional interventions and a sufficient condition for effect estimation of these interventions called functional positivity. Second, we develop conditions for nonparametric effect estimation based on the gradient fields of the functional confounder and the true outcome function. To estimate effects under these conditions, we develop Level-set Orthogonal Descent Estimation (LODE). Further, we prove error bounds on LODE's effect estimates, evaluate our methods on simulated and real data, and empirically demonstrate the value of EFC.
翻译:因果关系推断依据了两个基本假设: 忽略和推定。 我们研究当真正的混淆值可以作为观察到的数据的函数来表达时的因果关系推断; 我们称这一设定的估算为功能混淆器(EFC) 。 在这种背景下, 满足了忽略性, 不论是否违反积极性, 总体而言, 因果关系推断是不可能的。 我们考虑两种情况, 其中因果关系是可估量的。 首先, 我们讨论部分治疗的干预措施, 称为功能干预, 以及这些干预措施的影响估计的充足条件 。 其次, 我们根据功能混淆器的梯度字段和真实结果函数, 制定非参数效应估计条件 。 为了估算这些条件下的影响, 我们开发了水平定位的正谱源源估计( LODE ) 。 此外, 我们证明错误的界限是LODE 的效应估计, 评估我们模拟和实际数据的方法, 以及实验性地证明 EFC 的价值 。