Modern statistics provides an ever-expanding toolkit for estimating unknown parameters. Consequently, applied statisticians frequently face a difficult decision: retain a parameter estimate from a familiar method or replace it with an estimate from a newer or complex one. While it is traditional to compare estimators using risk, such comparisons are rarely conclusive in realistic settings. In response, we propose the "c-value" as a measure of confidence that a new estimate achieves smaller loss than an old estimate on a given dataset. We show that it is unlikely that a computed c-value is large and that the new estimate has larger loss than the old. Therefore, just as a small p-value provides evidence to reject a null hypothesis, a large c-value provides evidence to use a new estimate in place of the old. For a wide class of problems and estimators, we show how to compute a c-value by first constructing a data-dependent high-probability lower bound on the difference in loss. The c-value is frequentist in nature, but we show that it can provide a validation of Bayesian estimates in real data applications involving hierarchical models and Gaussian processes.


翻译:现代统计为估计未知参数提供了一个不断扩大的工具包。 因此,应用统计人员经常面临一个困难的决定:保留一种熟悉方法的参数估计,或用一种较新或较复杂方法的估计数来取代这种估计。虽然传统上比较使用风险的估算者,但这种比较在现实环境中很少是结论性的。作为回应,我们建议“c-value”作为一种信任度的衡量标准,即新估计的损失小于对某一数据集的旧估计。我们表明,计算出的C-value不可能很大,新的估计损失大于旧的。因此,一个小的p-value提供了拒绝无效假设的证据,而一个大的c-value则提供了在旧的假设中使用新估计的证据。对于广泛的问题和估计者来说,我们展示了如何通过首先构建一种依赖数据的高概率对损失差异的较低约束来计算C-value。 c-value是经常发生的,但我们表明,它可以在涉及等级模型和Gassian进程的真实数据应用中验证Bayesian的估计。

0
下载
关闭预览

相关内容

【Nature】贝叶斯统计与建模综述,26页pdf
专知会员服务
77+阅读 · 2021年1月21日
专知会员服务
51+阅读 · 2020年12月14日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
教程 | 用TensorFlow Estimator实现文本分类
机器之心
4+阅读 · 2018年5月17日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月9日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
【Nature】贝叶斯统计与建模综述,26页pdf
专知会员服务
77+阅读 · 2021年1月21日
专知会员服务
51+阅读 · 2020年12月14日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
教程 | 用TensorFlow Estimator实现文本分类
机器之心
4+阅读 · 2018年5月17日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员