Security analysts prepare threat analysis upon investigating an attack, an emerging cyber threat, or a recently discovered vulnerability. Threat intelligence on malware attacks and campaigns is shared on blog posts, reports, analyses, and tweets with varying technical details. Other security analysts use this intelligence to inform them of emerging threats, indicators of compromise, attack methods, and preventative measures. Collectively known as threat intelligence, it is typically in an unstructured format and, therefore, challenging to integrate seamlessly into existing IDPS systems. In this paper, we propose a framework that aggregates and combines CTI - the openly available cyber threat intelligence information. The information is extracted and stored in a structured format using knowledge graphs such that the semantics of the threat intelligence can be preserved and shared at scale with other security analysts. We propose the first semi-supervised open-source knowledge graph (KG) framework, TINKER, to capture cyber threat information and its context. Following TINKER, we generate a Cyberthreat Intelligence Knowledge Graph (CTI-KG). We demonstrate the efficacy of CTI-KG using different use cases and its application for security analysts.


翻译:安全分析家在调查攻击、新出现的网络威胁或最近发现的脆弱程度时准备威胁分析。关于恶意攻击和运动的威胁情报在博客文章、报告、分析和带有各种技术细节的推文中分享。其他安全分析家利用这一情报向他们通报新出现的威胁、妥协指标、攻击方法和预防措施。集体称为威胁情报,通常采用非结构化格式,因此难以无缝地融入现有的国内流离失所者信息系统。在本文件中,我们提议了一个框架,将CTI——公开可得的网络威胁情报信息——CTI(CTI-KG)集成并合在一起。这些信息以结构化格式提取和储存,使用知识图表,使威胁情报的语义得以保存,并与其他安全分析家大规模分享。我们提出了第一个半监督的开放源知识图框架(KG),即TINKER,以捕捉网络威胁信息及其背景。在TINKER之后,我们制作了一个网络威胁情报知识图(CTI-KG)。我们用不同用途的案件及其安全分析师的应用展示了CTI-KG的功效。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
102+阅读 · 2020年3月4日
Arxiv
92+阅读 · 2020年2月28日
Reasoning on Knowledge Graphs with Debate Dynamics
Arxiv
14+阅读 · 2020年1月2日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员