The framework of multi-agent learning explores the dynamics of how individual agent strategies evolve in response to the evolving strategies of other agents. Of particular interest is whether or not agent strategies converge to well known solution concepts such as Nash Equilibrium (NE). Most ``fixed order'' learning dynamics restrict an agent's underlying state to be its own strategy. In ``higher order'' learning, agent dynamics can include auxiliary states that can capture phenomena such as path dependencies. We introduce higher-order gradient play dynamics that resemble projected gradient ascent with auxiliary states. The dynamics are ``payoff based'' in that each agent's dynamics depend on its own evolving payoff. While these payoffs depend on the strategies of other agents in a game setting, agent dynamics do not depend explicitly on the nature of the game or the strategies of other agents. In this sense, dynamics are ``uncoupled'' since an agent's dynamics do not depend explicitly on the utility functions of other agents. We first show that for any specific game with an isolated completely mixed-strategy NE, there exist higher-order gradient play dynamics that lead (locally) to that NE, both for the specific game and nearby games with perturbed utility functions. Conversely, we show that for any higher-order gradient play dynamics, there exists a game with a unique isolated completely mixed-strategy NE for which the dynamics do not lead to NE. These results build on prior work that showed that uncoupled fixed-order learning cannot lead to NE in certain instances, whereas higher-order variants can. Finally, we consider the mixed-strategy equilibrium associated with coordination games. While higher-order gradient play can converge to such equilibria, we show such dynamics must be inherently internally unstable.


翻译:多智能体学习的框架探究个体代理策略如何随着其他代理演化而演化。特别感兴趣的是代理策略是否收敛到众所周知的解决方案概念,如纳什均衡(NE)。大多数“固定阶”学习动态限制代理的基本状态为其自己的策略。在“高阶”学习中,代理动态可以包括辅助状态,可以捕捉路径依赖性等现象。我们介绍了类似于具有辅助状态的投影梯度上升的高阶梯度游戏动力学。动态是“基于支付”的,因为每个代理的动态取决于其自身的不断变化的支付。虽然这些支付取决于博弈设置中其他代理的策略,但代理动态并不显式取决于游戏的性质或其他代理的策略。在这个意义上,动力学是“非耦合的”,因为代理的动力学不明确地取决于其他代理的效用函数。我们首先展示对于任何具体的游戏,在隔离完全混合策略NE存在的游戏中,存在高阶梯度游戏动力学导致(局部)该NE,无论是特定游戏还是具有扰动效用函数的附近游戏。相反,我们展示了对于任何高阶梯度玩家动力学,存在唯一的隔离完全混合策略NE的游戏,动力学不会导致NE。这些结果建立在先前的工作基础上,该工作表明非耦合的固定阶学习无法在某些情况下导致NE,而高阶变体可以。最后,我们考虑与协调游戏相关的混合策略均衡。虽然高阶梯度玩法可能会收敛到这样的均衡状态,我们展示这样的动力学必须本质上是内部不稳定的。

0
下载
关闭预览

相关内容

【CMU博士论文】课程学习,Curriculum Learning,193页pdf
专知会员服务
51+阅读 · 2022年8月13日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
腊月廿八 | 强化学习-TRPO和PPO背后的数学
AI研习社
17+阅读 · 2019年2月2日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月29日
Arxiv
0+阅读 · 2023年5月26日
VIP会员
相关VIP内容
【CMU博士论文】课程学习,Curriculum Learning,193页pdf
专知会员服务
51+阅读 · 2022年8月13日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
腊月廿八 | 强化学习-TRPO和PPO背后的数学
AI研习社
17+阅读 · 2019年2月2日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员