Large deep learning models have shown great potential for delivering exceptional results in various applications. However, the training process can be incredibly challenging due to the models' vast parameter sizes, often consisting of hundreds of billions of parameters. Common distributed training methods, such as data parallelism, tensor parallelism, and pipeline parallelism, demand significant data communication throughout the process, leading to prolonged wait times for some machines in physically distant distributed systems. To address this issue, we propose a novel solution called Hulk, which utilizes a modified graph neural network to optimize distributed computing systems. Hulk not only optimizes data communication efficiency between different countries or even different regions within the same city, but also provides optimal distributed deployment of models in parallel. For example, it can place certain layers on a machine in a specific region or pass specific parameters of a model to a machine in a particular location. By using Hulk in experiments, we were able to improve the time efficiency of training large deep learning models on distributed systems by more than 20\%. Our open source collection of unlabeled data:https://github.com/DLYuanGod/Hulk.


翻译:大型深层学习模型显示出在各种应用中产生不同结果的巨大潜力,然而,由于模型的参数大小巨大,往往由数千亿个参数组成,培训过程可能具有巨大的挑战性。共同分布式培训方法,如数据平行、多元平行和管道平行,在整个过程中需要大量的数据通信,导致在物理上偏远分布式系统中某些机器长时间等待时间。为了解决这一问题,我们提出了一个叫“绿巨”的新解决方案,它利用一个修改过的图形神经网络优化分布式计算系统。绿巨不仅优化了不同国家之间甚至同一城市内不同区域的数据通信效率,而且还同时提供了最佳分布式模型的部署。例如,它可以在特定区域的机器上放置一定的层,或者将模型的具体参数传给某个特定地点的机器。通过实验,我们能够提高对分布式系统大型深层学习模型进行20个以上“ ” 的培训的时间效率。我们公开收集的无标签数据来源:https://github.com/DLYuanGen/Hulk。</s>

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
114+阅读 · 2022年4月21日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
105+阅读 · 2020年5月3日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
15+阅读 · 2022年11月1日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
18+阅读 · 2020年7月13日
Arxiv
43+阅读 · 2019年12月20日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员