We introduce continuous $R$-valuations on directed-complete posets (dcpos, for short), as a generalization of continuous valuations in domain theory, by extending values of continuous valuations from reals to so-called Abelian d-rags $R$. Like the valuation monad $\mathbf{V}$ introduced by Jones and Plotkin, we show that the construction of continuous $R$-valuations extends to a strong monad $\mathbf{V}^R$ on the category of dcpos and Scott-continuous maps. Additionally, and as in recent work by the two authors and C. Th\'eron, and by the second author, B. Lindenhovius, M. Mislove and V. Zamdzhiev, we show that we can extract a commutative monad $\mathbf{V}^R_m$ out of it, whose elements we call minimal $R$-valuations. We also show that continuous $R$-valuations have close connections to measures when $R$ is taken to be $\mathbf{I}\mathbb{R}^\star_+$, the interval domain of the extended nonnegative reals: (1) On every coherent topological space, every non-zero, bounded $\tau$-smooth measure $\mu$ (defined on the Borel $\sigma$-algebra), canonically determines a continuous $\mathbf{I}\mathbb{R}^\star_+$-valuation; and (2) such a continuous $\mathbf{I}\mathbb{R}^\star_+$-valuation is the most precise (in a certain sense) continuous $\mathbf{I}\mathbb{R}^\star_+$-valuation that approximates $\mu$, when the support of $\mu$ is a compact Hausdorff subspace of a second-countable stably compact topological space. This in particular applies to Lebesgue measure on the unit interval. As a result, the Lebesgue measure can be identified as a continuous $\mathbf{I}\mathbb{R}^\star_+$-valuation. Additionally, we show that the latter is minimal.


翻译:连续$R$-估值在有向完备偏序集上被引入,作为域论中连续估值的一般化,通过将连续估值的值从实数扩展到所谓的Abelian $d$-rag $R$,从而进行扩展。像Jones和Plotkin引入的估值单子$\mathbf{V}$一样,我们展示了连续$R$-估值的构造可以扩展为在dcpos范畴和Scott连续映射上强单子$\mathbf{V}^R$。此外,正如最近两位作者和C. Th\'eron,以及第二位作者、B. Lindenhovius、M. Mislove和V. Zamdzhiev的工作一样,我们展示了我们可以从中提取出一个交换单子$\mathbf{V}^R_m$,其元素被称为最小$R$-估值。我们还展示了连续$R$-估值与测度的联系,当$R$被取为扩展非负实数的区间域$\mathbf{I}\mathbb{R}^\star_+$时:(1)在每个连贯拓扑空间上,每个非零有界的$\tau$-平滑测度$\mu$(在Borel $\sigma$-代数上定义)都可以唯一地确定一个连续的$\mathbf{I}\mathbb{R}^\star_+$-估值;(2)当$\mu$的支撑是一个可数紧致豪斯多夫子空间的子集时,这样的连续$\mathbf{I}\mathbb{R}^\star_+$-估值是最精确的(在某种意义下),当且仅当$\mu$的支撑是第二可数的稳定紧致拓扑空间的紧致豪斯多夫子空间的子空间时。这特别适用于单位区间上的Lebesgue测度。因此,Lebesgue测度可以被识别为连续的$\mathbf{I}\mathbb{R}^\star_+$-估值。此外,我们证明了后者是最小值。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
专知会员服务
42+阅读 · 2020年12月18日
【电子书】大数据挖掘,Mining of Massive Datasets,附513页PDF
专知会员服务
103+阅读 · 2020年3月22日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
从最优化的角度看待 Softmax 损失函数
极市平台
31+阅读 · 2019年2月21日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Description Complexity of Regular Distributions
Arxiv
0+阅读 · 2023年5月9日
Arxiv
0+阅读 · 2023年5月9日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
从最优化的角度看待 Softmax 损失函数
极市平台
31+阅读 · 2019年2月21日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员