We introduce continuous $R$-valuations on directed-complete posets (dcpos, for short), as a generalization of continuous valuations in domain theory, by extending values of continuous valuations from reals to so-called Abelian d-rags $R$. Like the valuation monad $\mathbf{V}$ introduced by Jones and Plotkin, we show that the construction of continuous $R$-valuations extends to a strong monad $\mathbf{V}^R$ on the category of dcpos and Scott-continuous maps. Additionally, and as in recent work by the two authors and C. Th\'eron, and by the second author, B. Lindenhovius, M. Mislove and V. Zamdzhiev, we show that we can extract a commutative monad $\mathbf{V}^R_m$ out of it, whose elements we call minimal $R$-valuations. We also show that continuous $R$-valuations have close connections to measures when $R$ is taken to be $\mathbf{I}\mathbb{R}^\star_+$, the interval domain of the extended nonnegative reals: (1) On every coherent topological space, every non-zero, bounded $\tau$-smooth measure $\mu$ (defined on the Borel $\sigma$-algebra), canonically determines a continuous $\mathbf{I}\mathbb{R}^\star_+$-valuation; and (2) such a continuous $\mathbf{I}\mathbb{R}^\star_+$-valuation is the most precise (in a certain sense) continuous $\mathbf{I}\mathbb{R}^\star_+$-valuation that approximates $\mu$, when the support of $\mu$ is a compact Hausdorff subspace of a second-countable stably compact topological space. This in particular applies to Lebesgue measure on the unit interval. As a result, the Lebesgue measure can be identified as a continuous $\mathbf{I}\mathbb{R}^\star_+$-valuation. Additionally, we show that the latter is minimal.
翻译:连续$R$-估值在有向完备偏序集上被引入,作为域论中连续估值的一般化,通过将连续估值的值从实数扩展到所谓的Abelian $d$-rag $R$,从而进行扩展。像Jones和Plotkin引入的估值单子$\mathbf{V}$一样,我们展示了连续$R$-估值的构造可以扩展为在dcpos范畴和Scott连续映射上强单子$\mathbf{V}^R$。此外,正如最近两位作者和C. Th\'eron,以及第二位作者、B. Lindenhovius、M. Mislove和V. Zamdzhiev的工作一样,我们展示了我们可以从中提取出一个交换单子$\mathbf{V}^R_m$,其元素被称为最小$R$-估值。我们还展示了连续$R$-估值与测度的联系,当$R$被取为扩展非负实数的区间域$\mathbf{I}\mathbb{R}^\star_+$时:(1)在每个连贯拓扑空间上,每个非零有界的$\tau$-平滑测度$\mu$(在Borel $\sigma$-代数上定义)都可以唯一地确定一个连续的$\mathbf{I}\mathbb{R}^\star_+$-估值;(2)当$\mu$的支撑是一个可数紧致豪斯多夫子空间的子集时,这样的连续$\mathbf{I}\mathbb{R}^\star_+$-估值是最精确的(在某种意义下),当且仅当$\mu$的支撑是第二可数的稳定紧致拓扑空间的紧致豪斯多夫子空间的子空间时。这特别适用于单位区间上的Lebesgue测度。因此,Lebesgue测度可以被识别为连续的$\mathbf{I}\mathbb{R}^\star_+$-估值。此外,我们证明了后者是最小值。