In this paper, we focus on the BDS test, which is a nonparametric test of independence. Specifically, the null hypothesis $H_{0}$ of it is that $\{u_{t}\}$ is i.i.d. (independent and identically distributed), where $\{u_{t}\}$ is a random sequence. The BDS test is widely used in economics and finance, but it has a weakness that cannot be ignored: over-rejecting $H_{0}$ even if the length $T$ of $\{u_{t}\}$ is as large as $(100,2000)$. To improve the over-rejection problem of BDS test, considering that the correlation integral is the foundation of BDS test, we not only accurately describe the expectation of the correlation integral under $H_{0}$, but also calculate all terms of the asymptotic variance of the correlation integral whose order is $O(T^{-1})$ and $O(T^{-2})$, which is essential to improve the finite sample performance of BDS test. Based on this, we propose a revised BDS (RBDS) test and prove its asymptotic normality under $H_{0}$. The RBDS test not only inherits all the advantages of the BDS test, but also effectively corrects the over-rejection problem of the BDS test, which can be fully confirmed by the simulation results we presented. Moreover, based on the simulation results, we find that similar to BDS test, RBDS test would also be affected by the parameter estimations of the ARCH-type model, resulting in size distortion, but this phenomenon can be alleviated by the logarithmic transformation preprocessing of the estimate residuals of the model. Besides, through some actual datasets that have been demonstrated to fit well with ARCH-type models, we also compared the performance of BDS test and RBDS test in evaluating the goodness-of-fit of the model in empirical problem, and the results reflect that, under the same condition, the performance of the RBDS test is more encouraging.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2022年11月21日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
21+阅读 · 2019年8月21日
Arxiv
14+阅读 · 2018年5月15日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
12+阅读 · 2022年11月21日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
21+阅读 · 2019年8月21日
Arxiv
14+阅读 · 2018年5月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员