Boosting is a method for finding a highly accurate hypothesis by linearly combining many ``weak" hypotheses, each of which may be only moderately accurate. Thus, boosting is a method for learning an ensemble of classifiers. While boosting has been shown to be very effective for decision trees, its impact on neural networks has not been extensively studied. We prove one important difference between sums of decision trees compared to sums of convolutional neural networks (CNNs) which is that a sum of decision trees cannot be represented by a single decision tree with the same number of parameters while a sum of CNNs can be represented by a single CNN. Next, using standard object recognition datasets, we verify experimentally the well-known result that a boosted ensemble of decision trees usually generalizes much better on testing data than a single decision tree with the same number of parameters. In contrast, using the same datasets and boosting algorithms, our experiments show the opposite to be true when using neural networks (both CNNs and multilayer perceptrons (MLPs)). We find that a single neural network usually generalizes better than a boosted ensemble of smaller neural networks with the same total number of parameters.


翻译:推动是一种方法,通过将许多“ 弱点” 假设进行线性结合,找到高度准确的假设,其中每个假设都可能是中度准确的。 因此, 提升是一种学习分类器集合的方法。 虽然提升已证明对决策树非常有效, 但对于神经网络的影响并没有进行广泛的研究。 我们证明决策树与进化神经网络(CNNs)总和之间的一个重大差别, 也就是说, 决策树的总和不能由具有相同参数的单一决定树代表, 而CNN的总和则由单一的CNN来代表。 下一步, 我们使用标准对象识别数据集, 实验性地核查众所周知的结果, 即: 增强决策树的集合通常比同一参数的单一决策树在测试数据方面要好得多。 相比之下, 使用相同的数据集和增强算法, 我们的实验显示, 当使用神经网络( CNN和多层摄取器( MLP) 的总和时, 我们发现, 一个单一神经网络的总数量通常比一般参数要好得多。

0
下载
关闭预览

相关内容

自然语言处理现代方法,176页pdf
专知会员服务
268+阅读 · 2021年2月22日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
14+阅读 · 2021年7月20日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
9+阅读 · 2018年3月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员