Cross domain object detection is a realistic and challenging task in the wild. It suffers from performance degradation due to large shift of data distributions and lack of instance-level annotations in the target domain. Existing approaches mainly focus on either of these two difficulties, even though they are closely coupled in cross domain object detection. To solve this problem, we propose a novel Target-perceived Dual-branch Distillation (TDD) framework. By integrating detection branches of both source and target domains in a unified teacher-student learning scheme, it can reduce domain shift and generate reliable supervision effectively. In particular, we first introduce a distinct Target Proposal Perceiver between two domains. It can adaptively enhance source detector to perceive objects in a target image, by leveraging target proposal contexts from iterative cross-attention. Afterwards, we design a concise Dual Branch Self Distillation strategy for model training, which can progressively integrate complementary object knowledge from different domains via self-distillation in two branches. Finally, we conduct extensive experiments on a number of widely-used scenarios in cross domain object detection. The results show that our TDD significantly outperforms the state-of-the-art methods on all the benchmarks. Our code and model will be available at https://github.com/Feobi1999/TDD.


翻译:在野外,跨域物体探测是一项现实和具有挑战性的任务。由于数据分布的大规模转移和在目标领域缺乏实例性说明,它受到性能退化的影响。现有的方法主要侧重于这两个难题中的任何一个,尽管它们在跨域物体探测中相互密切结合。为了解决这个问题,我们提出了一个新的新型的目标-渗透双部门蒸馏(TDD)框架。通过将源和目标领域的探测分支纳入统一的教师-学生学习计划,它能够减少域转移,并有效地产生可靠的监督。特别是,我们首先在两个领域之间引入了独特的目标建议 Perceiver。它能够适应性地加强源探测器,通过利用迭代交叉注意的目标提议环境来在目标图像中看到对象。随后,我们为示范培训设计了一个简明的双部门自我蒸馏(D)战略,通过在两个分支的自我蒸馏,逐步将不同领域的补充对象知识整合在一起。最后,我们就跨域物体探测中广泛使用的情景进行了广泛的实验。结果显示,我们的TDD明显超越了在1999年/F中现有的标准。我们的数据-TD/F标准将大大超越了我们现有的标准。

0
下载
关闭预览

相关内容

Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
60+阅读 · 2022年5月5日
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Transfer Adaptation Learning: A Decade Survey
Arxiv
37+阅读 · 2019年3月12日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员