We study p-Laplacians and spectral clustering for a recently proposed hypergraph model that incorporates edge-dependent vertex weights (EDVW). These weights can reflect different importance of vertices within a hyperedge, thus conferring the hypergraph model higher expressivity and flexibility. By constructing submodular EDVW-based splitting functions, we convert hypergraphs with EDVW into submodular hypergraphs for which the spectral theory is better developed. In this way, existing concepts and theorems such as p-Laplacians and Cheeger inequalities proposed under the submodular hypergraph setting can be directly extended to hypergraphs with EDVW. For submodular hypergraphs with EDVW-based splitting functions, we propose an efficient algorithm to compute the eigenvector associated with the second smallest eigenvalue of the hypergraph 1-Laplacian. We then utilize this eigenvector to cluster the vertices, achieving higher clustering accuracy than traditional spectral clustering based on the 2-Laplacian. More broadly, the proposed algorithm works for all submodular hypergraphs that are graph reducible. Numerical experiments using real-world data demonstrate the effectiveness of combining spectral clustering based on the 1-Laplacian and EDVW.
翻译:我们为最近提出的高光谱模型研究P-Laplacians和光谱集成,该模型将吸收以边缘为依存的脊椎重量(EDVW),这些重量可以反映顶部脊椎的不同重要性,从而赋予高光谱模型更高的表达性和灵活性。我们通过建造以亚模量为基础的EDVW分裂功能,将带有EDVW的高光谱转换成光谱理论较完善的次模量高光谱。这样,现有的概念和理论,如在亚模量高光谱设置下提出的P-Laplacian和Cheeger不平等,可以直接扩展到与EDVW的高度图的不同重要性。对于以EDVW为基础的分裂功能的亚模高光谱高光谱高光谱,我们建议一种有效的算法,将与高光谱1-Laplacian第二最小的双光谱值相连接的顶部高光谱高光谱高光谱高光谱高光谱转换器转换器转换成。我们然后利用这个顶级图,在以2-Lapla-Lamocial 和高光谱模型组合的基础上实现比传统光谱组合的光谱组合。在以1M-IV-IVMLA上的所有高光学上,拟议的高光谱模型模拟模拟的模型实验。