Interval scheduling is a basic problem in the theory of algorithms and a classical task in combinatorial optimization. We develop a set of techniques for partitioning and grouping jobs based on their starting and ending times, that enable us to view an instance of interval scheduling on many jobs as a union of multiple interval scheduling instances, each containing only a few jobs. Instantiating these techniques in dynamic and local settings of computation leads to several new results. For $(1+\varepsilon)$-approximation of job scheduling of $n$ jobs on a single machine, we develop a fully dynamic algorithm with $O(\frac{\log{n}}{\varepsilon})$ update and $O(\log{n})$ query worst-case time. Further, we design a local computation algorithm that uses only $O(\frac{\log{N}}{\varepsilon})$ queries when all jobs are length at least $1$ and have starting/ending times within $[0,N]$. Our techniques are also applicable in a setting where jobs have rewards/weights. For this case we design a fully dynamic deterministic algorithm whose worst-case update and query time are $\operatorname{poly}(\log n,\frac{1}{\varepsilon})$. Equivalently, this is the first algorithm that maintains a $(1+\varepsilon)$-approximation of the maximum independent set of a collection of weighted intervals in $\operatorname{poly}(\log n,\frac{1}{\varepsilon})$ time updates/queries. This is an exponential improvement in $1/\varepsilon$ over the running time of a randomized algorithm of Henzinger, Neumann, and Wiese ~[SoCG, 2020], while also removing all dependence on the values of the jobs' starting/ending times and rewards, as well as removing the need for any randomness. We also extend our approaches for interval scheduling on a single machine to examine the setting with $M$ machines.


翻译:间距调度是算法理论中的一个基本问题, 而经典任务则是组合优化中的一个典型任务 。 我们开发了一套基于开始和结束时间对工作进行分区和分组的技术, 这使得我们能将许多工作的间距列表作为多个间隔时间的组合来查看, 每个都只包含几个任务 。 在动态和本地计算设置中验证这些技术会导致若干新的结果 。 对于 $ ( 1 <unk> varepsilon) 和 实现在单一机器上对 美元工作的配置, 我们开发了一套完全动态的计算法, 包括 $ (\\ reforcial_ logue{ varelogslall} 更新 和 $ (\\\ log{ r\\ r\\ n) 查询最坏的时间 。 此外, 我们设计了一个只使用 $ (\ laformax) 的计算算算法, 将所有工作的时间长度至少为 $ 1美元, 并在 $ 0. 0N] 中开始/ 。 我们的技术也适用于一个有回报/ 重量的工作设置。</s>

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
162+阅读 · 2020年1月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
11+阅读 · 2022年9月1日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员