The partially occluded image recognition (POIR) problem has been a challenge for artificial intelligence for a long time. A common strategy to handle the POIR problem is using the non-occluded features for classification. Unfortunately, this strategy will lose effectiveness when the image is severely occluded, since the visible parts can only provide limited information. Several studies in neuroscience reveal that feature restoration which fills in the occluded information and is called amodal completion is essential for human brains to recognize partially occluded images. However, feature restoration is commonly ignored by CNNs, which may be the reason why CNNs are ineffective for the POIR problem. Inspired by this, we propose a novel brain-inspired feature restoration network (BIFRNet) to solve the POIR problem. It mimics a ventral visual pathway to extract image features and a dorsal visual pathway to distinguish occluded and visible image regions. In addition, it also uses a knowledge module to store object prior knowledge and uses a completion module to restore occluded features based on visible features and prior knowledge. Thorough experiments on synthetic and real-world occluded image datasets show that BIFRNet outperforms the existing methods in solving the POIR problem. Especially for severely occluded images, BIRFRNet surpasses other methods by a large margin and is close to the human brain performance. Furthermore, the brain-inspired design makes BIFRNet more interpretable.


翻译:部分隐蔽的图像识别( POIR) 问题长期以来一直是人工智能的一个挑战。 处理 POIR 问题的通用策略正在使用非隐蔽的分类特性。 不幸的是, 该战略在图像严重隐蔽时将失去效力, 因为可见部分只能提供有限的信息。 神经科学的几项研究显示, 功能恢复是填补隐蔽信息并被称为“ 模式完成” 的功能, 对人类大脑识别部分隐蔽的图像至关重要。 然而, CNN 通常忽视特征恢复, 这可能是CNN对POIR 问题无效的原因。 受此启发, 我们提议建立一个新的由大脑启发的功能恢复网络( BIFRNet ) 网络来解决 POIR 问题。 它模仿一种提取隐蔽信息特征的直视路径和辨辨别隐蔽和可见图像区域。 此外, 它还使用知识模块存储目标先前知识, 并使用一个基于可见特征和先前知识的完成模块来恢复隐蔽的特征。 在合成和真实的 OFRI 网络上进行新的大脑测试, 更深入的图像解析、 以更深层的BIFRL 的当前图像解 的图像解方式展示其他的图像 。</s>

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【资源】文本风格迁移相关资源汇总
专知
13+阅读 · 2020年7月11日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
27+阅读 · 2020年12月24日
SlowFast Networks for Video Recognition
Arxiv
19+阅读 · 2018年12月10日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【资源】文本风格迁移相关资源汇总
专知
13+阅读 · 2020年7月11日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员