Reinforcement Learning (RL) is highly dependent on the meticulous design of the reward function. However, accurately assigning rewards to each state-action pair in Long-Term RL (LTRL) challenges is formidable. Consequently, RL agents are predominantly trained with expert guidance. Drawing on the principles of ordinal utility theory from economics, we propose a novel reward estimation algorithm: ELO-Rating based RL (ERRL). This approach is distinguished by two main features. Firstly, it leverages expert preferences over trajectories instead of cardinal rewards (utilities) to compute the ELO rating of each trajectory as its reward. Secondly, a new reward redistribution algorithm is introduced to mitigate training volatility in the absence of a fixed anchor reward. Our method demonstrates superior performance over several leading baselines in long-term scenarios (extending up to 5000 steps), where conventional RL algorithms falter. Furthermore, we conduct a thorough analysis of how expert preferences affect the outcomes.
翻译:暂无翻译