Video decomposition is very important to extract moving foreground objects from complex backgrounds in computer vision, machine learning, and medical imaging, e.g., extracting moving contrast-filled vessels from the complex and noisy backgrounds of X-ray coronary angiography (XCA). However, the challenges caused by dynamic backgrounds, overlapping heterogeneous environments and complex noises still exist in video decomposition. To solve these problems, this study is the first to introduce a flexible visual working memory model in video decomposition tasks to provide interpretable and high-performance hierarchical deep architecture, integrating the transformative representations between sensory and control layers from the perspective of visual and cognitive neuroscience. Specifically, robust PCA unrolling networks acting as a structure-regularized sensor layer decompose XCA into sparse/low-rank structured representations to separate moving contrast-filled vessels from noisy and complex backgrounds. Then, patch recurrent convolutional LSTM networks with a backprojection module embody unstructured random representations of the control layer in working memory, recurrently projecting spatiotemporally decomposed nonlocal patches into orthogonal subspaces for heterogeneous vessel retrieval and interference suppression. This video decomposition deep architecture effectively restores the heterogeneous profiles of intensity and the geometries of moving objects against the complex background interferences. Experiments show that the proposed method significantly outperforms state-of-the-art methods in accurate moving contrast-filled vessel extraction with excellent flexibility and computational efficiency.
翻译:视频分解对于从计算机视觉、机器学习和医疗成像等复杂背景的复杂背景中从计算机视觉、机器学习和医疗成像等复杂背景中提取移动前方物体非常重要,例如,从X射线冠心血管血管变化和噪音的背景中提取移动装有对比充装的容器,而动态背景、相重叠的环境和复杂噪音造成的挑战仍然存在于视频分解中。为了解决这些问题,本研究是第一个在视频分解任务中引入灵活视觉工作记忆模型,以便在视频分解任务中提供可解释的和高性能等级高的深层结构,从视觉和认知神经科学的角度将感官和控制层之间的转型表现结合起来,例如,从X射线冠冠动的复杂和吵动背景中提取对比充装有对比装有对比的容器。 具体来说,作为结构正规化传感器分解的移动网络将XCA降成稀低级/低级结构代表,以便分别移动比较装船只分解析和压缩的系统结构。