项目名称: 花生Cu/Zn-SOD活性响应干旱胁迫的分子机制研究

项目编号: No.31201167

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 食品科学、农学基础与作物学

项目作者: 张昆

作者单位: 山东农业大学

项目金额: 25万元

中文摘要: 花生是重要油料作物,干旱是影响花生生产的主要逆境因子。超氧化物歧化酶(SOD)是抵御干旱引起的活性氧氧化损伤的关键酶,SOD活性与抗旱性密切相关。花生中起主要作用的是Cu/Zn-SOD。花生种质间、干旱处理间SOD活性具有较大差异,而本课题组近期研究了花生四大类型代表种质,没发现种质间Cu/Zn-SOD结构基因有差异。花生SOD基因转录水平调控SOD活性的研究未见报道。本项目拟选用不同抗旱性及不同SOD活性的花生种质,进行不同胁迫程度、不同胁迫持续时间的干旱处理,测定叶片Cu/Zn-SOD活性,通过荧光定量PCR检测Cu/Zn-SOD基因表达量,分析不同种质、不同干旱胁迫下Cu/Zn-SOD活性变化和基因表达量的关系,揭示花生Cu/Zn-SOD活性变化在基因转录水平的调控机制。对探讨花生SOD活性的调控途径及抗旱机理具有重要意义,对研发抗旱栽培措施和筛选抗旱种质亦有参考价值。

中文关键词: 花生;干旱胁迫;SOD 活性;分子机制;

英文摘要: Peanut is an important oil crop in China. Drought stress causes most serious harm to peanut production.Superoxide dismutase is key enzyme in resisting oxidative damage caused by drought stress. Superoxide dismutase activity is closely related to drought resistance. Most of the superoxide dismutase in peanut is Cu/Zn superoxide dismutase. There are big differences among germplasms and drought stresses in peanut. Our recent research showed that there is no difference in gene structure among most peanut germplasms from four types of peanut (A. hypogaea L.). The changing mechanism of SOD activity has not been reported in peanut at the gene transcription level. This project plans to select peanut germplasms with different drought resistance and different SOD activity. And let them exposed to different degree and sustaining time of drought stress. Using NBT method to determine Cu/Zn superoxide dismutase activity and using RT-PCR method to determine gene expressive quantity. And then relationship between the Cu/Zn superoxide dismutase activity and gene expressive quantity of different treatments be analyzed. The purpose is to reveal the regulation mechanism of changes in Cu/Zn superoxide dismutase activity at gene transcription level, which has an important significance in study on the regulation pathway of Cu/Zn super

英文关键词: Peanut;Drought Stress;SOD Activity;Molecular Mechanism;

成为VIP会员查看完整内容
0

相关内容

【CVPR2022】基于样例查询机制的在线动作检测
专知会员服务
10+阅读 · 2022年3月23日
城市大脑案例集(2022),114页pdf
专知会员服务
114+阅读 · 2022年1月10日
【NeurIPS2021】神经网络表示的相似度和匹配
专知会员服务
27+阅读 · 2021年10月29日
专知会员服务
42+阅读 · 2021年10月8日
专知会员服务
10+阅读 · 2021年10月6日
专知会员服务
34+阅读 · 2021年8月16日
专知会员服务
47+阅读 · 2021年5月17日
【NeurIPS 2020】视觉注意力神经编码
专知会员服务
41+阅读 · 2020年10月4日
基于深度学习的表面缺陷检测方法综述
专知会员服务
94+阅读 · 2020年5月31日
靶向蛋白质降解的蛋白-蛋白相互作用预测
GenomicAI
4+阅读 · 2022年3月5日
已删除
将门创投
11+阅读 · 2019年7月4日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月20日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关主题
相关VIP内容
【CVPR2022】基于样例查询机制的在线动作检测
专知会员服务
10+阅读 · 2022年3月23日
城市大脑案例集(2022),114页pdf
专知会员服务
114+阅读 · 2022年1月10日
【NeurIPS2021】神经网络表示的相似度和匹配
专知会员服务
27+阅读 · 2021年10月29日
专知会员服务
42+阅读 · 2021年10月8日
专知会员服务
10+阅读 · 2021年10月6日
专知会员服务
34+阅读 · 2021年8月16日
专知会员服务
47+阅读 · 2021年5月17日
【NeurIPS 2020】视觉注意力神经编码
专知会员服务
41+阅读 · 2020年10月4日
基于深度学习的表面缺陷检测方法综述
专知会员服务
94+阅读 · 2020年5月31日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员