We construct the first explicit two-sided vertex expanders that bypass the spectral barrier. Previously, the strongest known explicit vertex expanders were given by $d$-regular Ramanujan graphs, whose spectral properties imply that every small subset of vertices $S$ has at least $0.5d|S|$ distinct neighbors. However, it is possible to construct Ramanujan graphs containing a small set $S$ with no more than $0.5d|S|$ neighbors. In fact, no explicit construction was known to break the $0.5 d$-barrier. In this work, we give an explicit construction of an infinite family of $d$-regular graphs (for large enough $d$) where every small set expands by a factor of $\approx 0.6d$. More generally, for large enough $d_1,d_2$, we give an infinite family of $(d_1,d_2)$-biregular graphs where small sets on the left expand by a factor of $\approx 0.6d_1$, and small sets on the right expand by a factor of $\approx 0.6d_2$. In fact, our construction satisfies an even stronger property: small sets on the left and right have unique-neighbor expansion $0.6d_1$ and $0.6d_2$ respectively. Our construction follows the tripartite line product framework of Hsieh, McKenzie, Mohanty & Paredes, and instantiates it using the face-vertex incidence of the $4$-dimensional Ramanujan clique complex as its base component. As a key part of our analysis, we derive new bounds on the triangle density of small sets in the Ramanujan clique complex.
翻译:暂无翻译