Consider the Telephone Broadcast problem in which an input is a connected graph $G$ on $n$ vertices, a source vertex $s \in V(G)$, and a positive integer $t$. The objective is to decide whether there is a broadcast protocol from $s$ that ensures that all the vertices of $G$ get the message in at most $t$ rounds. We consider the broadcast protocol where, in a round, any node aware of the message can forward it to at most one of its neighbors. As the number of nodes aware of the message can at most double at each round, for a non-trivial instance we have $n \le 2^t$. Hence, the brute force algorithm that checks all the permutations of the vertices runs in time $2^{2^{\calO(t)}} \cdot n^{\calO(1)}$. As our first result, we prove this simple algorithm is the best possible in the following sense. Telephone Broadcast does not admit an algorithm running in time $2^{2^{o(t)}} \cdot n^{\calO(1)}$, unless the \ETH\ fails. To the best of our knowledge, this is only the fourth example of \NP-Complete problem that admits a double exponential lower bound when parameterized by the solution size. It also resolves the question by Fomin, Fraigniaud, and Golovach [WG 2023]. In the same article, the authors asked whether the problem is \FPT\ when parameterized by the feedback vertex set number of the graph. We answer this question in the negative. Telephone Broadcast, when restricted to graphs of the feedback vertex number one, and hence treewidth of two, is \NP-\complete. We find this a relatively rare example of problems that admit a polynomial-time algorithm on trees but is \NP-\complete\ on graphs of treewidth two.
翻译:暂无翻译