We describe a new class of capture-recapture models for closed populations when individual covariates are available. The novelty consists in combining a latent class model where the marginal weights and the conditional distributions given the latent may depend on covariates, with a model for the marginal distribution of the available covariates. In addition, a general formulation for the conditional distributions given the latent which allows serial dependence is provided. An efficient algorithm for maximum likelihood estimation is presented, asymptotic results are derived, and a procedure for constructing likelihood based confidence intervals for the population total is presented. Two examples with real data are used to illustrate the proposed approach.


翻译:我们描述了在个别共变情况存在时对封闭人口采用一种新的捕捉-抓获模式类别,新颖之处在于将潜在类别模式(即边际加权数和潜在值的有条件分布值可能取决于共变情况)与现有共变数的边际分布模式结合起来,此外,根据允许序列依赖的潜值,对有条件分布作了一般性的表述;提出了尽可能估计可能性的有效算法,得出了无症状结果,并提出了为人口总数建立基于可能性的信任间隔的程序;用两个有真实数据的例子来说明拟议办法。

0
下载
关闭预览

相关内容

ICML 2021论文收录
专知会员服务
123+阅读 · 2021年5月8日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月30日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
ICML 2021论文收录
专知会员服务
123+阅读 · 2021年5月8日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员