Classifying moral values in user-generated text from social media is critical in understanding community cultures and interpreting user behaviors of social movements. Moral values and language usage can change across the social movements; however, text classifiers are usually trained in source domains of existing social movements and tested in target domains of new social issues without considering the variations. In this study, we examine domain shifts of moral values and language usage, quantify the effects of domain shifts on the morality classification task, and propose a neural adaptation framework via instance weighting to improve cross-domain classification tasks. The quantification analysis suggests a strong correlation between morality shifts, language usage, and classification performance. We evaluate the neural adaptation framework on a public Twitter data across 7 social movements and gain classification improvements up to 12.1\%. Finally, we release a new data of the COVID-19 vaccine labeled with moral values and evaluate our approach on the new target domain. For the case study of the COVID-19 vaccine, our adaptation framework achieves up to 5.26\% improvements over neural baselines.
翻译:从社交媒体对用户生成的文字中的道德价值观进行分类,对于理解社区文化和解释社会运动的用户行为至关重要。道德价值观和语言使用可在社会运动中发生变化;然而,文本分类人员通常在现有的社会运动的来源领域接受培训,并在新的社会问题的目标领域进行测试,而不考虑差异。在本研究中,我们研究了道德价值观和语言使用领域的领域变化,量化了域变化对道德分类任务的影响,并通过实例加权提出神经适应框架,以改进跨行业的分类任务。量化分析表明道德转变、语言使用和分类绩效之间有着很强的关联。我们评估了7种社会运动的公共推特数据神经适应框架,并在12.1%之前获得了分类改进。最后,我们发布了带有道德价值观标签的COVID-19疫苗的新数据,并评估了我们在新目标领域的做法。关于COVID-19疫苗的案例研究,我们的适应框架在神经基线方面实现了5.26的改进。