The recently developed matrix based Renyi's entropy enables measurement of information in data simply using the eigenspectrum of symmetric positive semi definite (PSD) matrices in reproducing kernel Hilbert space, without estimation of the underlying data distribution. This intriguing property makes the new information measurement widely adopted in multiple statistical inference and learning tasks. However, the computation of such quantity involves the trace operator on a PSD matrix $G$ to power $\alpha$(i.e., $tr(G^\alpha)$), with a normal complexity of nearly $O(n^3)$, which severely hampers its practical usage when the number of samples (i.e., $n$) is large. In this work, we present computationally efficient approximations to this new entropy functional that can reduce its complexity to even significantly less than $O(n^2)$. To this end, we leverage the recent progress on Randomized Numerical Linear Algebra, developing Taylor, Chebyshev and Lanczos approximations to $tr(G^\alpha)$ for arbitrary values of $\alpha$ by converting it into matrix-vector multiplications problem. We also establish the connection between the matrix-based Renyi's entropy and PSD matrix approximation, which enables exploiting both clustering and block low-rank structure of $G$ to further reduce the computational cost. We theoretically provide approximation accuracy guarantees and illustrate the properties of different approximations. Large-scale experimental evaluations on both synthetic and real-world data corroborate our theoretical findings, showing promising speedup with negligible loss in accuracy.


翻译:最近开发的基于Renyi 的矩阵使得能够测量数据中的信息,只是利用对正半确定(PSD)矩阵的正正正正正正正正正正正半确定(PSD)矩阵来复制核心的Hilbert空间,而没有估算基本数据分布。这种令人感兴趣的属性使得新的信息测量在多重统计推理和学习任务中广泛采用。然而,这种数量的计算涉及一个私营部门司基矩阵的追踪操作员,即G$G$至alpha$(即,G$tr(Gäalpha)美元),通常的复杂程度近于O(n)3美元,当样本数量(即美元)很大时,这严重妨碍了其实际使用。在这项工作中,我们为这个新的英美化功能提供了计算效率的近似近似近似近似值,可以将其复杂性降到甚至大大低于$O(n&2)美元。为此,我们开发了Nummericalal Linebrala Algebra, 和 Lanczos 将它的正al-ral-ralallialalalalalalal-ralalal-ral-ralalal-ralalalalalal-rational-rational-rational-lations, rational-rational-rational-rational-rations bal-rations bal-rations nual-rations bal-rational-rations bal-rations bal-rational-rational-rational-rational-rational-s bal-s bal-rational-s bal-s bal-rational-rational-rations bal-s bal-s bal-sal-s bal)。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月2日
Arxiv
54+阅读 · 2022年1月1日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员