Steganography is the practice of encoding secret information into innocuous content in such a manner that an adversarial third party would not realize that there is hidden meaning. While this problem has classically been studied in security literature, recent advances in generative models have led to a shared interest among security and machine learning researchers in developing scalable steganography techniques. In this work, we show that a steganography procedure is perfectly secure under \citet{cachin_perfect}'s information theoretic-model of steganography if and only if it is induced by a coupling. Furthermore, we show that, among perfectly secure procedures, a procedure is maximally efficient if and only if it is induced by a minimum entropy coupling. These insights yield what are, to the best of our knowledge, the first steganography algorithms to achieve perfect security guarantees with non-trivial efficiency; additionally, these algorithms are highly scalable. To provide empirical validation, we compare a minimum entropy coupling-based approach to three modern baselines -- arithmetic coding, Meteor, and adaptive dynamic grouping -- using GPT-2 and WaveRNN as communication channels. We find that the minimum entropy coupling-based approach yields superior encoding efficiency, despite its stronger security constraints. In aggregate, these results suggest that it may be natural to view information-theoretic steganography through the lens of minimum entropy coupling.
翻译:将秘密信息编入无节制内容的做法,就是将秘密信息编成隐蔽的内容,这样敌对的第三方就不会意识到存在隐蔽的含义。虽然这个问题在安全文献中已经典型地研究过这一问题。虽然这个问题在安全文献中已经进行了典型的研究,但基因模型的最近进步导致安全和机器学习研究人员在开发可扩缩的成形技术方面有着共同的兴趣。在这项工作中,我们表明,在“citet{cachin_perfect}”的信息理论模型下,一种成形程序是完全安全的,只有在它是由混合引发的。此外,我们表明,在完全安全的程序中,一种程序如果而且只有在最小的变形联的情况下,它才会产生效率最高的效率。根据我们的知识,这些洞察发现,为了在非边际效率的情况下实现完全的安全保障,第一个成形的算法是完全的;此外,这些算法是高度可缩略的。为了提供经验验证,我们比较了基于最小的螺旋式组合方法,我们比较了三种现代基准 -- -- 算 Codetingcoting,Metor,如果程序是完全安全的,那么有效,这种程序是最有效的,那么有效,那么,程序是最有效的,那么,那么,程序是最有效的,那么,它就是效率,那么,它就是最有效,它就是最精确的,它--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</s>