Approximate computing (AC) has become a prominent solution to improve the performance, area, and power/energy efficiency of a digital design at the cost of output accuracy. We propose a novel scalable approximate multiplier that utilizes a lookup table-based compensation unit. To improve energy-efficiency, input operands are truncated to a reduced bitwidth representation (e.g., h bits) based on their leading one positions. Then, a curve-fitting method is employed to map the product term to a linear function, and a piecewise constant error-correction term is used to reduce the approximation error. For computing the piecewise constant error-compensation term, we partition the function space into M segments and compute the compensation factor for each segment by averaging the errors in the segment. The multiplier supports various degrees of truncation and error-compensation to exploit accuracy-efficiency trade-off. The proposed approximate multiplier offers better error metrics such as mean and standard deviation of absolute relative error (MARED and StdARED) compare to a state-of-the-art integer approximate multiplier. The proposed approximate multiplier improves the MARED and StdARED by about 38% and 32% when its energy consumption is about equal to the state-of-the-art approximate multiplier. Moreover, the performance of the proposed approximate multiplier is evaluated in image classification applications using a Deep Neural Network (DNN). The results indicate that the degradation of DNN accuracy is negligible especially due to the compensation properties of our approximate multiplier.


翻译:近距离计算(AC)已成为提高数字设计性能、面积和电/能源效率的突出解决方案,以产出准确性为代价。我们提出一个新的可缩放的近似乘数,使用基于表格的校正单位。为了提高能源效率,输入操作根据其领先位置,被缩短为缩小比特代表度(例如,hbits)。然后,使用一个符合曲线的方法,将产品术语映射成线性功能,并使用一个不折不扣的常数计算错误校正词来减少近似误差。在计算偏差常的常数精确度校正数术语时,我们将功能空间分成M部分,并通过平均部分误差来计算每个部分的补偿系数。该乘数支持不同程度的调度和误差补偿,以其主要的偏差度(MARED和StdARD)为基准值比,以最精确的比值来减少贴误差差。拟议中,“NED”的比值比值比值比值(MARED和“D”的比值比值值比值值值值值值值值值值值值值值值值值值值值值值值值值值是38,以比值比值比值的比值的比值的比值的比值值值值值值值值值值值值值是比值值值值值值值值值值值值值值值值值值值值值值值值值值,以比值是比值,以比值是比值的比值值值值,比值是比值的比值的比值值值值值值值值值值值值值值值值,比值值是比值值值值值值值值值值值值值。。和比值比值的比值比值比值的比值的比值的比值值为比值为比值为值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值</s>

0
下载
关闭预览

相关内容

自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
43+阅读 · 2022年6月30日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月26日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员