Deep learning is also known as hierarchical learning, where the learner _learns_ to represent a complicated target function by decomposing it into a sequence of simpler functions to reduce sample and time complexity. This paper formally analyzes how multi-layer neural networks can perform such hierarchical learning _efficiently_ and _automatically_ by SGD on the training objective. On the conceptual side, we present a theoretical characterizations of how certain types of deep (i.e. super-constant layer) neural networks can still be sample and time efficiently trained on some hierarchical tasks, when no existing algorithm (including layerwise training, kernel method, etc) is known to be efficient. We establish a new principle called "backward feature correction", where the errors in the lower-level features can be automatically corrected when training together with the higher-level layers. We believe this is a key behind how deep learning is performing deep (hierarchical) learning, as opposed to layerwise learning or simulating some non-hierarchical method. On the technical side, we show for every input dimension $d > 0$, there is a concept class of degree $\omega(1)$ multi-variate polynomials so that, using $\omega(1)$-layer neural networks as learners, SGD can learn any function from this class in $\mathsf{poly}(d)$ time to any $\frac{1}{\mathsf{poly}(d)}$ error, through learning to represent it as a composition of $\omega(1)$ layers of quadratic functions using "backward feature correction." In contrast, we do not know any other simpler algorithm (including layerwise training, applying kernel method sequentially, training a two-layer network, etc) that can learn this concept class in $\mathsf{poly}(d)$ time even to any $d^{-0.01}$ error. As a side result, we prove $d^{\omega(1)}$ lower bounds for several non-hierarchical learners, including any kernel methods.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
11+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年8月30日
Arxiv
16+阅读 · 2023年6月6日
Arxiv
16+阅读 · 2022年11月1日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
37+阅读 · 2021年2月10日
Arxiv
24+阅读 · 2021年1月25日
Arxiv
126+阅读 · 2020年9月6日
Arxiv
25+阅读 · 2018年1月24日
VIP会员
相关资讯
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
相关论文
Arxiv
0+阅读 · 2023年8月30日
Arxiv
16+阅读 · 2023年6月6日
Arxiv
16+阅读 · 2022年11月1日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
37+阅读 · 2021年2月10日
Arxiv
24+阅读 · 2021年1月25日
Arxiv
126+阅读 · 2020年9月6日
Arxiv
25+阅读 · 2018年1月24日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
11+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员