Prediction in a new domain without any training sample, called zero-shot domain adaptation (ZSDA), is an important task in domain adaptation. While prediction in a new domain has gained much attention in recent years, in this paper, we investigate another potential of ZSDA. Specifically, instead of predicting responses in a new domain, we find a description of a new domain given a prediction. The task is regarded as predictive optimization, but existing predictive optimization methods have not been extended to handling multiple domains. We propose a simple framework for predictive optimization with ZSDA and analyze the condition in which the optimization problem becomes convex optimization. We also discuss how to handle the interaction of characteristics of a domain in predictive optimization. Through numerical experiments, we demonstrate the potential usefulness of our proposed framework.
翻译:在没有培训抽样的情况下对一个新领域进行预测,称为零射域适应(ZSDA),是领域适应的一项重要任务。虽然近年来对新领域的预测引起了人们的极大关注,但我们在本文件中调查了ZSDA的另一种潜力。具体地说,我们没有预测在新领域的反应,而是发现对新领域作出预测的描述。任务被视为预测优化,但现有的预测优化方法尚未扩大到处理多个领域。我们提出了一个与ZSDA一起预测优化的简单框架,并分析了优化问题成为曲线优化的条件。我们还讨论如何在预测优化中处理一个领域特性的相互作用。我们通过数字实验,展示了我们拟议框架的潜在效用。