RAW image datasets are more suitable than the standard RGB image datasets for the ill-posed inverse problems in low-level vision, but not common in the literature. There are also a few studies to focus on mapping sRGB images to RAW format. Mapping from sRGB to RAW format could be a relevant domain for reverse style transferring since the task is an ill-posed reversing problem. In this study, we seek an answer to the question: Can the ISP operations be modeled as the style factor in an end-to-end learning pipeline? To investigate this idea, we propose a novel architecture, namely RST-ISP-Net, for learning to reverse the ISP operations with the help of adaptive feature normalization. We formulate this problem as a reverse style transferring and mostly follow the practice used in the prior work. We have participated in the AIM Reversed ISP challenge with our proposed architecture. Results indicate that the idea of modeling disruptive or modifying factors as style is still valid, but further improvements are required to be competitive in such a challenge.
翻译:RAW 图像数据集比标准 RGB 图像数据集更适合低水平视觉错误反向问题的标准 RGB 图像数据集, 但在文献中并不常见 。 还有几项研究要侧重于将 sRGB 图像映射成 RAW 格式。 从 sRGB 映射到 RAW 格式, 可能是反向转换的相关领域, 因为任务是一个错误的反向问题 。 在这项研究中, 我们寻求问题的答案 : ISP 操作能否建模成一个在端到端学习管道中的风格要素? 为了调查这个想法, 我们建议了一个新的结构, 即 RST- ISP- Net, 以便学习在适应性特征正常化的帮助下, 扭转 ISP 操作。 我们把这个问题发展成一个反向模式, 并主要遵循先前工作中使用的做法 。 我们参与了 AIM Reverersed ISP 挑战与我们提议的架构。 结果表明, 将破坏性或修改性因素建模作为样式的理念仍然有效, 但是在这样的挑战中还需要进一步的改进才能有竞争力 。