Computer-aided diagnosis has recently received attention for its advantage of low cost and time efficiency. Although deep learning played a major role in the recent success of acne detection, there are still several challenges such as color shift by inconsistent illumination, variation in scales, and high density distribution. To address these problems, we propose an acne detection network which consists of three components, specifically: Composite Feature Refinement, Dynamic Context Enhancement, and Mask-Aware Multi-Attention. First, Composite Feature Refinement integrates semantic information and fine details to enrich feature representation, which mitigates the adverse impact of imbalanced illumination. Then, Dynamic Context Enhancement controls different receptive fields of multi-scale features for context enhancement to handle scale variation. Finally, Mask-Aware Multi-Attention detects densely arranged and small acne by suppressing uninformative regions and highlighting probable acne regions. Experiments are performed on acne image dataset ACNE04 and natural image dataset PASCAL VOC 2007. We demonstrate how our method achieves the state-of-the-art result on ACNE04 and competitive performance with previous state-of-the-art methods on the PASCAL VOC 2007.
翻译:最近,计算机辅助诊断因其成本低、时间效率低的优势而得到关注。尽管深层次学习在近期成功检测丙烷成功过程中发挥了重要作用,但仍存在若干挑战,如不同照明、比例变化和高密度分布不一导致的色变等。为了解决这些问题,我们提议建立一个由三个组成部分组成的丙烯检测网络,具体包括:复合地貌精细、动态环境增强和面具-软件多用途。首先,复合地貌精细精细结合了语义精细信息和细细细节,以丰富特征显示,从而减轻了不平衡的照明的不利影响。然后,动态环境增强控制了不同可接受性的多尺度特性领域,以适应规模变异。最后,“面具-软件多用途”通过抑制无信息化区域并突出可能存在的 acne区域,探测出密集而小型的丙烷。对丙烷进行了实验,对丙烷图像数据集ACNE04和自然图像数据集 PCAL VOC 2007 进行了实验。我们展示了我们的方法如何在2007年ACNRE04和竞争性性性性性性性性表现了ASCA-CAL的A-CA-O方法在2007年的状态结果上取得了2007年的状态。