Joint relation modeling is a curial component in human motion prediction. Most existing methods tend to design skeletal-based graphs to build the relations among joints, where local interactions between joint pairs are well learned. However, the global coordination of all joints, which reflects human motion's balance property, is usually weakened because it is learned from part to whole progressively and asynchronously. Thus, the final predicted motions are sometimes unnatural. To tackle this issue, we learn a medium, called balance attractor (BA), from the spatiotemporal features of motion to characterize the global motion features, which is subsequently used to build new joint relations. Through the BA, all joints are related synchronously, and thus the global coordination of all joints can be better learned. Based on the BA, we propose our framework, referred to Attractor-Guided Neural Network, mainly including Attractor-Based Joint Relation Extractor (AJRE) and Multi-timescale Dynamics Extractor (MTDE). The AJRE mainly includes Global Coordination Extractor (GCE) and Local Interaction Extractor (LIE). The former presents the global coordination of all joints, and the latter encodes local interactions between joint pairs. The MTDE is designed to extract dynamic information from raw position information for effective prediction. Extensive experiments show that the proposed framework outperforms state-of-the-art methods in both short and long-term predictions in H3.6M, CMU-Mocap, and 3DPW.


翻译:联合关系建模是人类运动预测的一个曲解部分。 多数现有方法倾向于设计基于骨骼的图表,以构建联合体之间的关系, 从而让共同体之间能够很好地相互交流。 但是,所有联合体(反映了人类运动的平衡属性)的全球协调通常会因为从部分到整体的学习而削弱。 因此,最后预测的动作有时是非自然的。 要解决这个问题,我们从运动的表面时空特征中学习一种介质,称为平衡吸引器(BA),以描述全球运动特征,随后又用来建立新的联合关系。 通过BA,所有联合体是同步的,因此可以更好地了解所有联合体的全球性协调,反映了人类运动的平衡属性。根据BA,我们提出了我们的框架,从部分到整体逐步地逐步地学到了吸引者指导神经网络,主要包括以吸引者为基础的联合关系提取器(AJRE)和多时间级动态动力提取器(MDDEP)提取器(MDAR), AJRE主要包括全球联合协调提取器(GCE)和本地互动器(LIE), 在动态模型中, 后期中, 展示了全球信息流流流流流流流中, 和模型中, 展示了全球信息的组合中, 和模型中, 展示了全球信息流流流流流流流流中的所有数据-MU。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
专知会员服务
32+阅读 · 2021年6月12日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
37+阅读 · 2021年2月10日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员