The idea of using a deep autoencoder to encode seismic waveform features and then use them in different seismological applications is appealing. In this paper, we designed tests to evaluate this idea of using autoencoders as feature extractors for different seismological applications, such as event discrimination (i.e., earthquake vs. noise waveforms, earthquake vs. explosion waveforms, and phase picking). These tests involve training an autoencoder, either undercomplete or overcomplete, on a large amount of earthquake waveforms, and then using the trained encoder as a feature extractor with subsequent application layers (either a fully connected layer, or a convolutional layer plus a fully connected layer) to make the decision. By comparing the performance of these newly designed models against the baseline models trained from scratch, we conclude that the autoencoder feature extractor approach may only perform well under certain conditions such as when the target problems require features to be similar to the autoencoder encoded features, when a relatively small amount of training data is available, and when certain model structures and training strategies are utilized. The model structure that works best in all these tests is an overcomplete autoencoder with a convolutional layer and a fully connected layer to make the estimation.
翻译:使用深自动编码器来编码地震波形特性并随后将其用于不同的地震学应用中的深自动编码器的想法是很有吸引力的。在本文中,我们设计了测试来评价使用自动编码器作为不同地震应用(例如事件区分(例如地震对噪音波形、地震对噪音波形、地震对爆炸波形和相位选择)的特征提取器的特性。这些测试涉及对大量地震波形的自动编码器进行不完全或过度的训练,然后使用经过训练的编码器作为特征提取器,然后作为随后应用层(或完全相连的层,或电动层加上完全相连的层)的特征提取器来作出决定。通过将这些新设计的模型与从零到零的基线模型进行比较,我们得出结论认为,在有些条件下,例如目标问题要求特征类似于自动编码器的特征时,当有相对较少的培训数据时,当利用某些模型结构和培训战略来进行决策时,这些新设计的模型结构与从头到所有测试中都进行完全的层化,因此,这些层的模型结构与所有测试都同层完全相连。