We present a simple, efficient, and scalable unfolding network, SAUNet, to simplify the network design with an adaptive alternate optimization framework for hyperspectral image (HSI) reconstruction. SAUNet customizes a Residual Adaptive ADMM Framework (R2ADMM) to connect each stage of the network via a group of learnable parameters to promote the usage of mask prior, which greatly stabilizes training and solves the accuracy degradation issue. Additionally, we introduce a simple convolutional modulation block (CMB), which leads to efficient training, easy scale-up, and less computation. Coupling these two designs, SAUNet can be scaled to non-trivial 13 stages with continuous improvement. Without bells and whistles, SAUNet improves both performance and speed compared with the previous state-of-the-art counterparts, which makes it feasible for practical high-resolution HSI reconstruction scenarios. We set new records on CAVE and KAIST HSI reconstruction benchmarks. Code and models are available at https://github.com/hustvl/SAUNet.
翻译:我们提出了一个简单、高效和可扩展的网络SAUNet,以简化网络设计,为超光谱图像重建提供一个适应性替代优化框架。SAUNet定制了一个残余适应性ADMM框架(R2ADMM),通过一组可学习参数连接网络的每个阶段,以促进以前使用掩码,这大大稳定了培训和解决精确度退化问题。此外,我们引入了一个简单的革命调制块(CMB),导致高效培训、容易升级和减少计算。将这两个设计结合起来,SAUNet可以不断改进,达到非三进制13级。没有敲铃声和哨声,SAUANet可以提高业绩和速度,与以前最先进的对口单位相比,这样可以实现高分辨率的HSI重建设想。我们为CAVE和KAIST HSI重建基准设置了新的记录。代码和模型可在https://github.com/hustvl/SAUNet上查阅。