Database fingerprinting have been widely adopted to prevent unauthorized sharing of data and identify the source of data leakages. Although existing schemes are robust against common attacks, like random bit flipping and subset attack, their robustness degrades significantly if attackers utilize the inherent correlations among database entries. In this paper, we first demonstrate the vulnerability of existing database fingerprinting schemes by identifying different correlation attacks: column-wise correlation attack, row-wise correlation attack, and the integration of them. To provide robust fingerprinting against the identified correlation attacks, we then develop mitigation techniques, which can work as post-processing steps for any off-the-shelf database fingerprinting schemes. The proposed mitigation techniques also preserve the utility of the fingerprinted database considering different utility metrics. We empirically investigate the impact of the identified correlation attacks and the performance of mitigation techniques using real-world relational databases. Our results show (i) high success rates of the identified correlation attacks against existing fingerprinting schemes (e.g., the integrated correlation attack can distort 64.8\% fingerprint bits by just modifying 14.2\% entries in a fingerprinted database), and (ii) high robustness of the proposed mitigation techniques (e.g., with the mitigation techniques, the integrated correlation attack can only distort $3\%$ fingerprint bits).


翻译:为了防止未经授权分享数据并查明数据泄漏的来源,广泛采用了数据库指纹,以防止未经授权分享数据并查明数据泄漏的来源。虽然现有的计划对普通攻击,如随机的点翻和子集攻击十分有力,但是如果攻击者利用数据库条目之间的内在关联,其稳健性将大大降低。在本文件中,我们首先通过查明不同的相关攻击,用以下方法来证明现有数据库指纹鉴别方法的脆弱性:列前后的关联攻击、行对行边的关联攻击以及这些攻击的整合。为了针对已查明的关联攻击提供强有力的指纹,我们随后开发了减缓技术,这些技术可以作为任何现成数据库指纹鉴别方法的后处理步骤发挥作用。提议的减缓技术还维护了指纹数据库的效用,同时考虑到不同的实用指标。我们用实证方式调查了已查明的相关攻击的影响以及利用现实世界关系数据库进行的减缓技术的运作情况。我们的结果显示:(一) 与现有指纹鉴别方法(例如,综合相关攻击可以通过仅仅修改指纹数据库中的14.2 ⁇ 项条目来扭曲64.8 ⁇ 指印点。)以及(二)拟议的减缓技术的高度稳健性。

0
下载
关闭预览

相关内容

重磅!几何深度学习 新书,160页pdf阐述
专知会员服务
259+阅读 · 2021年4月29日
专知会员服务
65+阅读 · 2021年1月28日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
19+阅读 · 2020年11月6日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
9+阅读 · 2020年10月29日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员