Website Fingerprinting (WF) attacks are used by local passive attackers to determine the destination of encrypted internet traffic by comparing the sequences of packets sent to and received by the user to a previously recorded data set. As a result, WF attacks are of particular concern to privacy-enhancing technologies such as Tor. In response, a variety of WF defenses have been developed, though they tend to incur high bandwidth and latency overhead or require additional infrastructure, thus making them difficult to implement in practice. Some lighter-weight defenses have been presented as well; still, they attain only moderate effectiveness against recently published WF attacks. In this paper, we aim to present a realistic and novel defense, RegulaTor, which takes advantage of common patterns in web browsing traffic to reduce both defense overhead and the accuracy of current WF attacks. In the closed-world setting, RegulaTor reduces the accuracy of the state-of-the-art attack, Tik-Tok, against comparable defenses from 66% to 25.4%. To achieve this performance, it requires limited added latency and a bandwidth overhead 39.3% less than the leading moderate-overhead defense. In the open-world setting, RegulaTor limits a precision-tuned Tik-Tok attack to an F-score of .135, compared to .625 for the best comparable defense.


翻译:本地被动攻击者利用网站指纹(WF)攻击来确定加密互联网交通的目的地,办法是将寄给用户和用户收到的包裹序列与先前记录的数据集进行比较。因此,WF攻击对Tor等增强隐私的技术尤其令人关切。对此,开发了各种WF防御系统,尽管它们往往产生高带宽和潜伏性高压,或需要额外的基础设施,因此难以实际执行。还提出了一些较轻的防御系统;但是,它们仅对最近公布的WF攻击行动取得适度的效力。在本文件中,我们的目标是提供现实和新颖的防御系统,RegulaTor,它利用网络浏览通信的共同模式,以减少国防的间接费用和当前WFF攻击的准确性。在封闭世界环境中,RegulaTor降低了最先进的攻击的准确性,Tik-Tok,而相对相对的防御能力从66%降至25.4%;为了达到这一效果,它需要有限的加装和带带带带带带宽的顶部,39.3%的顶部和带带宽的顶部,比中标的防御系统要低至可比较的中度的防御系统。

0
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2020年12月28日
最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年11月15日
Arxiv
8+阅读 · 2020年6月15日
Clustered Object Detection in Aerial Images
Arxiv
5+阅读 · 2019年8月27日
Arxiv
5+阅读 · 2019年2月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员