The classic text preprocessing pipeline, comprising Tokenisation, Normalisation, Stop Words Removal, and Stemming/Lemmatisation, has been implemented in many systems for syntactic ontology matching (OM). However, the lack of standardisation in text preprocessing creates diversity in mapping results. In this paper we investigate the effect of the text preprocessing pipeline on syntactic OM in 8 Ontology Alignment Evaluation Initiative (OAEI) tracks with 49 distinct alignments. We find that Phase 1 text preprocessing (Tokenisation and Normalisation) is more effective than Phase 2 text preprocessing (Stop Words Removal and Stemming/Lemmatisation). To repair the unwanted false mappings caused by Phase 2 text preprocessing, we propose a novel context-based pipeline repair approach that employs a post hoc check to find common words that cause false mappings. These words are stored in a reserved word set and applied in text preprocessing. The experimental results show that our approach improves the matching correctness and the overall matching performance. We then consider the broader integration of the classic text preprocessing pipeline with modern large language models (LLMs) for OM. We recommend that (1) the text preprocessing pipeline be injected via function calling into LLMs to avoid the tendency towards unstable true mappings produced by LLM prompting; or (2) LLMs be used to repair non-existent and counter-intuitive false mappings generated by the text preprocessing pipeline.
翻译:暂无翻译