Crowdsourcing data from connected and automated vehicles (CAVs) is a cost-efficient way to achieve high-definition maps with up-to-date transient road information. Achieving the map with deterministic latency performance is, however, challenging due to the unpredictable resource competition and distributional resource demands. In this paper, we propose CoMap, a new crowdsourcing high definition (HD) map to minimize the monetary cost of network resource usage while satisfying the percentile requirement of end-to-end latency. We design a novel CROP algorithm to learn the resource demands of CAV offloading, optimize offloading decisions, and proactively allocate temporal network resources in a fully distributed manner. In particular, we create a prediction model to estimate the uncertainty of resource demands based on Bayesian neural networks and develop a utilization balancing scheme to resolve the imbalanced resource utilization in individual infrastructures. We evaluate the performance of CoMap with extensive simulations in an automotive edge computing network simulator. The results show that CoMap reduces up to 80.4% average resource usage as compared to existing solutions.
翻译:从连接和自动化车辆(CAVs)获得的众包数据是一种具有成本效益的方法,可以实现具有最新瞬时路信息的高清晰度地图。然而,由于不可预测的资源竞争和分配资源需求,以确定性潜伏性性性性能实现地图具有挑战性。在本文中,我们提议CoMap,这是一个新的众包高限(HD)地图,以尽量减少网络资源使用的货币成本,同时满足端到端的悬浮度要求。我们设计了一部新的CROP算法,以学习CAV卸载、优化卸载决定和以完全分布的方式主动分配时间网络资源的资源需求。特别是,我们创建了一个预测模型,以估计基于拜耳神经网络的资源需求的不确定性,并制定一个利用平衡计划,以解决个别基础设施资源利用不平衡的问题。我们用一个汽车边缘计算网络模拟器进行广泛的模拟来评估COMap的绩效。结果显示,与现有解决方案相比,COMap平均资源使用率将降低80.4%。