As model size continues to grow and access to labeled training data remains limited, transfer learning has become a popular approach in many scientific and engineering fields. This study explores the phenomenon of neural collapse (NC) in transfer learning for classification problems, which is characterized by the last-layer features and classifiers of deep networks having zero within-class variability in features and maximally and equally separated between-class feature means. Through the lens of NC, in this work the following findings on transfer learning are discovered: (i) preventing within-class variability collapse to a certain extent during model pre-training on source data leads to better transferability, as it preserves the intrinsic structures of the input data better; (ii) obtaining features with more NC on downstream data during fine-tuning results in better test accuracy. These results provide new insight into commonly used heuristics in model pre-training, such as loss design, data augmentation, and projection heads, and lead to more efficient and principled methods for fine-tuning large pre-trained models. Compared to full model fine-tuning, our proposed fine-tuning methods achieve comparable or even better performance while reducing fine-tuning parameters by at least 70% as well as alleviating overfitting.


翻译:由于模型规模继续扩大,而且获得标签培训数据的机会仍然有限,在许多科学和工程领域,转让学习已成为一种受欢迎的方法,本研究探索了在分类问题的转让学习中神经崩溃现象,其特点是,深层次网络的最后一层特征和分类者在特性上没有阶级内变异,而且各等级特征之间差别最大和平等。从NC的角度来看,在这项工作中发现关于转让学习的下列研究结果:(一) 在源数据示范培训前,在某种程度上防止阶级内部变异性崩溃,使源数据的内在结构得到更好的保护,从而导致更好的可转让性;(二) 在微调结果提高测试准确性时,在下游数据上取得更多的NC特性,这些结果使人们对模型前培训中常用的超自然主义有了新的了解,例如损失设计、数据增强和投影头,并导致更高效和有原则地调整预先培训的大型模型。与全面模型微调相比,我们提议的微调方法取得了可比的或甚至更好的性能,同时将微调率降低至少70%和超度。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
27+阅读 · 2023年1月12日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
13+阅读 · 2021年7月20日
Arxiv
64+阅读 · 2021年6月18日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
Arxiv
27+阅读 · 2023年1月12日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
13+阅读 · 2021年7月20日
Arxiv
64+阅读 · 2021年6月18日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员