We develop a Reduced Order Model (ROM) for a Large Eddy Simulation (LES) approach that combines a three-step algorithm called Evolve-Filter-Relax (EFR) with a computationally efficient finite volume method. The main novelty of our ROM lies in the use within the EFR algorithm of a nonlinear, deconvolution-based indicator function that identifies the regions of the domain where the flow needs regularization. The ROM we propose is a hybrid projection/data-driven strategy: a classical Proper Orthogonal Decomposition Galerkin projection approach for the reconstruction of the velocity and the pressure fields and a data-driven reduction method to approximate the indicator function used by the nonlinear differential filter. This data-driven technique is based on interpolation with Radial Basis Functions. We test the performance of our ROM approach on two benchmark problems: 2D and 3D unsteady flow past a cylinder at Reynolds number 0 <= Re <= 100. The accuracy of the ROM is assessed against results obtained with the full order model for velocity, pressure, indicator function and time evolution of the aerodynamics coefficients.
翻译:我们开发了一个大型低序模拟(LES)方法的减序模型(ROM),该模型将称为Evolve-Filter-Relax(EFR)的三步算法(EFR)与一种计算效率有限的体积法相结合。我们ROM的主要新颖之处在于在EFR算法内使用一种非线性、分变的指数函数,确定流动需要正规化的领域。我们提议的ROM是一种混合预测/数据驱动战略:一种用于重建速度和压力场的典型正正正正正正正正正正正正分位的Galerkin投影法,以及一种数据驱动的减少方法,以近似非线性差过滤器所使用的指标函数。这种数据驱动技术的基础是与 Radial Basy 函数的相互调和。我们用两个基准问题测试了我们的ROM方法的性能:2D和3D不稳流过Ronolds number 0 ⁇ Re ⁇ ⁇ 100. ROM的精度,根据在速度、压力、压力、指标函数和时间演变中的全部序列模型中获得的结果来评估。