In analyzing and assessing the condition of dynamical systems, it is necessary to account for nonlinearity. Recent advances in computation have rendered previously computationally infeasible analyses readily executable on common computer hardware. However, in certain use cases, such as uncertainty quantification or high precision real-time simulation, the computational cost remains a challenge. This necessitates the adoption of reduced-order modelling methods, which can reduce the computational toll of such nonlinear analyses. In this work, we propose a reduction scheme relying on the exploitation of an autoencoder as means to infer a latent space from output-only response data. This latent space, which in essence approximates the system's nonlinear normal modes (NNMs), serves as an invertible reduction basis for the nonlinear system. The proposed machine learning framework is then complemented via the use of long short term memory (LSTM) networks in the reduced space. These are used for creating an nonlinear reduced-order model (ROM) of the system, able to recreate the full system's dynamic response under a known driving input.


翻译:在分析和评估动态系统的状况时,有必要考虑到非线性。最近的计算进展使得以前在共同计算机硬件上进行不可行的计算分析变得不易执行。然而,在某些使用的情况下,如不确定性量化或高精度实时模拟,计算成本仍然是一项挑战。这需要采用减少顺序建模方法,这样可以减少非线性分析的计算成本。在这项工作中,我们建议采用一个减少计划,利用自动编码器作为从仅输出响应数据中推断潜在空间的手段。这种潜在空间实质上接近了系统的非线性正常模式(NNMS),是非线性系统不可逆的削减基础。随后,拟议的机器学习框架通过在缩小的空间使用长期短期内存网络加以补充。这些功能用于创建系统非线性减序模型(ROM),能够在已知的驱动输入下重新建立整个系统的动态反应。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Arxiv
0+阅读 · 2021年11月12日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
5+阅读 · 2018年1月16日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Top
微信扫码咨询专知VIP会员