We study the problem of fair and efficient allocation of a set of indivisible goods to agents with additive valuations using the popular fairness notions of envy-freeness up to one good (EF1) and equitability up to one good (EQ1) in conjunction with Pareto-optimality (PO). There exists a pseudo-polynomial time algorithm to compute an EF1+PO allocation, and a non-constructive proof of existence of allocations that are both EF1 and fractionally Pareto-optimal (fPO), which is a stronger notion than PO. We present a pseudo-polynomial time algorithm to compute an EF1+fPO allocation, thereby improving the earlier results. Our techniques also enable us to show that an EQ1+fPO allocation always exists when the values are positive, and that it can be computed in pseudo-polynomial time. We also consider the class of $k$-ary instances where $k$ is a constant, i.e., each agent has at most $k$ different values for the goods. We show that for such instances an EF1+fPO allocation can be computed in strongly polynomial time. When all values are positive, we show that an EQ1+fPO allocation for such instances can be computed in strongly polynomial time. Next, we consider instances where the number of agents is constant, and show that an EF1+PO (also EQ1+PO) allocation can be computed in polynomial time. These results significantly extend the polynomial-time computability beyond the known cases of binary or identical valuations. Further, we show that the problem of computing an EF1+PO allocation polynomial-time reduces to a problem in the complexity class PLS. We also design a polynomial-time algorithm that computes a Nash welfare maximizing allocation when there are constantly many agents with constant many different values for the goods.
翻译:我们研究的是将一组不可分割的商品公平而高效地分配给具有附加价值的代理商的问题。 使用一种流行的公平概念,即嫉妒自由至一好(EF1)和公平至一好(EQ1),结合Pareto-最优性(PO),将一组不可分割的商品公平有效地分配给具有添加价值的代理商。 存在一种假的极化时间算法,以计算EF1+PO的分配, 以及一种非建设性的证据, 即分配额既包括EF1,也包括分数的分数。 比PO更强的概念。 我们提出了一个假的假极化时间算法算法, 计算一个比EF1+fPO分配额更强的计算法。 我们的计算法显示EQ1+PO分配额, 当数值为正值时, 我们的计算法1+POPO分配额时, 我们的分数会明显显示EEFO1的计算结果, 当下值分配额时, 我们的推算法的计算出一个稳定时间, 我们的推算算算算出EF1+PODIPO的分数, 的计算过程显示, 的计算一个稳定的分配额可以持续时间, 我们的计算一个稳定的分配额可以持续的计算一个持续的计算, 当量, 我们的计算一个持续的计算一个持续地, QQODODODO的计算一个持续的计算时间, 。