Visual quality inspection in high performance manufacturing can benefit from automation, due to cost savings and improved rigor. Deep learning techniques are the current state of the art for generic computer vision tasks like classification and object detection. Manufacturing data can pose a challenge for deep learning because data is highly repetitive and there are few images of defects or deviations to learn from. Deep learning models trained with such data can be fragile and sensitive to context, and can under-detect new defects not found in the training data. In this work, we explore training defect detection models to learn specific defects out of context, so that they are more likely to be detected in new situations. We demonstrate how models trained on diverse images containing a common defect type can pick defects out in new circumstances. Such generic models could be more robust to new defects not found data collected for training, and can reduce data collection impediments to implementing visual inspection on production lines. Additionally, we demonstrate that object detection models trained to predict a label and bounding box outperform classifiers that predict a label only on held out test data typical of manufacturing inspection tasks. Finally, we studied the factors that affect generalization in order to train models that work under a wider range of conditions.
翻译:暂无翻译