We present a principled approach for designing stochastic Newton methods for solving finite sum optimization problems. Our approach has two steps. First, we rewrite the stationarity conditions as a system of nonlinear equations that associates each data point to a new row. Second, we apply a subsampled Newton Raphson method to solve this system of nonlinear equations. By design, methods developed using our approach are incremental, in that they require only a single data point per iteration. Using our approach, we develop a new Stochastic Average Newton (SAN) method, which is incremental and cheap to implement when solving regularized generalized linear models. We show through extensive numerical experiments that SAN requires no knowledge about the problem, neither parameter tuning, while remaining competitive as compared to classical variance reduced gradient methods, such as SAG and SVRG.


翻译:我们提出一种原则方法,用于设计解决有限和优化问题的随机牛顿方法。 我们的方法有两个步骤。 首先, 我们重写固定状态条件, 将其作为一个非线性方程式系统, 将每个数据指向新行。 其次, 我们应用一个子抽样的牛顿 Raphson 方法来解决这个非线性方程式系统。 从设计上看, 使用我们的方法是渐进的, 因为它们只需要一次迭代的单一数据点。 我们使用我们的方法, 我们开发了一种新的Stochatic 平均牛顿( SAN) 方法, 在解决常规化的通用线性模型时, 这种方法是递增和廉价的。 我们通过广泛的数字实验显示, SAN 不需要任何有关这个问题的知识, 也没有参数调整, 同时与传统的降低梯度方法相比, 诸如 SAG 和 SVRG 等具有竞争力。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员