This study combines simulated annealing with delta evaluation to solve the joint stratification and sample allocation problem. In this problem, atomic strata are partitioned into mutually exclusive and collectively exhaustive strata. Each stratification is a solution, the quality of which is measured by its cost. The Bell number of possible solutions is enormous for even a moderate number of atomic strata and an additional layer of complexity is added with the evaluation time of each solution. Many larger scale combinatorial optimisation problems cannot be solved to optimality because the search for an optimum solution requires a prohibitive amount of computation time; a number of local search heuristic algorithms have been designed for this problem but these can become trapped in local minima preventing any further improvements. We add to the existing suite of local search algorithms a simulated annealing algorithm that allows for an escape from local minima and uses delta evaluation to exploit the similarity between consecutive solutions and thereby reduce the evaluation time. We compare the simulated annealing algorithm with two recent algorithms. In both cases the SAA attains a solution of comparable quality in considerably less computation time.
翻译:此项研究将模拟annealing与三角洲评估相结合,以解决联合分层和样本分配问题。 在这一问题中,原子层被分割成相互排斥和集体包罗无遗的层层。 每个层层都是一个解决方案,其质量以成本来衡量。 即使是中度原子层, 可能的解决方案的钟数也是巨大的, 并且随着每个解决方案的评估时间增加一个额外的复杂层。 许多规模更大的组合优化问题无法解决, 因为寻找最佳解决方案需要过高的计算时间, 无法达到最佳程度; 一些本地的搜索超饱和算法已经为此问题设计好了, 但这些算法可能困在本地迷你法中, 无法做出任何进一步的改进。 我们在现有的一套本地搜索算法中添加了一种模拟的麻醉算法, 从而可以摆脱本地迷你法, 并使用三角评价来利用连续解决方案之间的相似性, 从而缩短评估时间。 我们比较了模拟的喷射算法和两种最近的算法。 在这两种情况下, SAA在相当的计算时间里, 都获得了一个可比质量的解决方案。