Optimal transport and information geometry both study geometric structures on spaces of probability distributions. Optimal transport characterizes the cost-minimizing movement from one distribution to another, while information geometry originates from coordinate-invariant properties of statistical inference. Their connections and applications in statistics and machine learning have started to gain more attention. In this paper we give a new differential geometric connection between the two fields. Namely, the pseudo-Riemannian framework of Kim and McCann, a geometric perspective on the fundamental Ma-Trudinger-Wang (MTW) condition in the regularity theory of optimal transport maps, encodes the dualistic structure of statistical manifold. This general relation is described using the natural framework of $c$-divergence, a divergence defined by an optimal transport map. As a by-product, we obtain a new information-geometric interpretation of the MTW tensor. This connection sheds light on old and new aspects of information geometry. The dually flat geometry of Bregman divergence corresponds to the quadratic cost and the pseudo-Euclidean space, and the $L^{(\alpha)}$-divergence introduced by Pal and the first author has constant sectional curvature in a sense to be made precise. In these cases we give a geometric interpretation of the information-geometric curvature in terms of the divergence between a primal-dual pair of geodesics.
翻译:最优化的迁移是从一个分布到另一个分布点的成本最小化运动的特点,而信息几何则则来自统计推理的坐标差异特性。在统计和机器学习方面的连接和应用已开始引起更多的注意。在本文中,我们给出了两个领域之间新的差异几何联系。即,金和麦坎恩的假里曼框架,这是关于基本马德鲁丁格-沃格(MTW)状况的几何视角,在最佳运输图的规律理论中,最佳运输图的规律性理论中,最佳运输图的二元结构编码。这种一般关系使用美元差异的自然框架来描述,这是由最佳运输图界定的一个差异。作为副产品,我们获得了对MTW Exmor的新的信息几何解释。这种联系揭示了信息的旧和新方面。Bregman差异的双直径直立度几何测法,与平面成本和统计多维度部分的正弦化地平面判读结果,我们开始有了这些精确的作者-直径空间和直径的直径直径。