Efficient algorithms for solving optimal transport problems are important for measuring and optimizing distances between functions. In the $L^2$ semi-discrete context, this problem consists of finding a map from a continuous density function to a discrete set of points so as to minimize the transport cost, using the squared Euclidean distance as the cost function. This has important applications in image stippling, clustering, resource allocation and in generating blue noise point distributions for rendering. Recent algorithms have been developed for solving the semi-discrete problem in $2d$ and $3d$, however, algorithms in higher dimensions have yet to be demonstrated, which rely on the efficient calculation of the power diagram (Laguerre diagram) in higher dimensions. Here, we introduce an algorithm for computing power diagrams, which extends to any topological dimension. We first evaluate the performance of the algorithm in $2d-6d$. We then restrict our attention to four-dimensional settings, demonstrating that our power diagrams can be used to solve optimal quantization and semi-discrete optimal transport problems, whereby a prescribed mass of each power cell is achieved by computing an optimized power diagram.


翻译:解决最佳运输问题的高效算法对于测量和优化功能之间的距离十分重要。 但是,在$L $2$半分解的背景下,这一问题包括从连续密度函数到一组离散点的地图,以便最大限度地降低运输成本,使用平方的欧几里德距离作为成本函数。这在图像平面、集群、资源分配和生成供拍摄的蓝色噪音点分布方面有着重要的应用。最近制定的算法是为了解决以2美元和3美元计算的半分解问题。但是,在较高维度的算法中,还有待演示,这些算法依赖于高维度的电动图(拉古尔图)的有效计算。这里,我们引入了计算电动图的算法,该算法延伸至任何表面学层面。我们首先用2d-6d$来评估算法的性能。然后我们将我们的注意力限制在四维设置上,表明我们的电动图可用于解决最佳孔化和半分解最佳运输问题,从而通过计算一个优化的电动图实现每个电动电池的指定质量。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
已删除
将门创投
3+阅读 · 2020年8月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年8月30日
Arxiv
0+阅读 · 2021年8月30日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2020年8月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员