In this paper, we develop and analyze numerical methods for high dimensional Fokker-Planck equations by leveraging generative models from deep learning. Our starting point is a formulation of the Fokker-Planck equation as a system of ordinary differential equations (ODEs) on finite-dimensional parameter space with the parameters inherited from generative models such as normalizing flows. We call such ODEs neural parametric Fokker-Planck equations. The fact that the Fokker-Planck equation can be viewed as the $L^2$-Wasserstein gradient flow of Kullback-Leibler (KL) divergence allows us to derive the ODEs as the constrained $L^2$-Wasserstein gradient flow of KL divergence on the set of probability densities generated by neural networks. For numerical computation, we design a variational semi-implicit scheme for the time discretization of the proposed ODE. Such an algorithm is sampling-based, which can readily handle the Fokker-Planck equations in higher dimensional spaces. Moreover, we also establish bounds for the asymptotic convergence analysis of the neural parametric Fokker-Planck equation as well as the error analysis for both the continuous and discrete versions. Several numerical examples are provided to illustrate the performance of the proposed algorithms and analysis.


翻译:在本文中,我们通过利用深层学习的基因模型,为高维Fokker-Planck方程式开发和分析数字方法。我们的出发点是将Fokker-Planck方程式配制成一个关于有限维度参数空间的普通差分方程(ODEs)系统,其参数由变异模型(如正常流)所继承。我们称之为“ODs神经准参数Fokker-Planck方程”。Fokker-Planck方程可以被视为Kullback-Leiber(KL)差价的$L2$-Wasserck 梯度流,这样可以让我们从KL2$-Wasserck 方程(OD)中得出ODEs,作为受限制的KL2$-Wassernstein梯度差异方程(ODR)在神经网络生成的概率密度方面的一组差异差数。我们用数字计算方法设计了一种变式半隐性半隐图。这种算法基于取样,可以在较高空间处理Fokker-Planck-Planck 方程式的变式分析中进行。我们还把Kymal-stalimactalimactalexexexexexexexacustralex分析,作为数的软化的数值分析。

0
下载
关闭预览

相关内容

专知会员服务
56+阅读 · 2021年4月12日
专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
已删除
将门创投
7+阅读 · 2018年12月12日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月30日
Arxiv
0+阅读 · 2021年8月28日
Arxiv
3+阅读 · 2018年6月18日
VIP会员
相关VIP内容
专知会员服务
56+阅读 · 2021年4月12日
专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
已删除
将门创投
7+阅读 · 2018年12月12日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员