Magnetic Resonance Imaging (MRI) has long been considered to be among "the gold standards" of diagnostic medical imaging. The long acquisition times, however, render MRI prone to motion artifacts, let alone their adverse contribution to the relative high costs of MRI examination. Over the last few decades, multiple studies have focused on the development of both physical and post-processing methods for accelerated acquisition of MRI scans. These two approaches, however, have so far been addressed separately. On the other hand, recent works in optical computational imaging have demonstrated growing success of concurrent learning-based design of data acquisition and image reconstruction schemes. Such schemes have already demonstrated substantial effectiveness, leading to considerably shorter acquisition times and improved quality of image reconstruction. Inspired by this initial success, in this work, we propose a novel approach to the learning of optimal schemes for conjoint acquisition and reconstruction of MRI scans, with the optimization carried out simultaneously with respect to the time-efficiency of data acquisition and the quality of resulting reconstructions. To be of a practical value, the schemes are encoded in the form of general k-space trajectories, whose associated magnetic gradients are constrained to obey a set of predefined hardware requirements (as defined in terms of, e.g., peak currents and maximum slew rates of magnetic gradients). With this proviso in mind, we propose a novel algorithm for the end-to-end training of a combined acquisition-reconstruction pipeline using a deep neural network with differentiable forward- and back-propagation operators. We demonstrate its effectiveness on image reconstruction and image segmentation tasks, reporting substantial improvements in terms of acceleration factors as well as the quality of these tasks.


翻译:长期以来,人们一直认为磁共振成像(MRI)是诊断医学成像的“金标准”之一。但是,由于购买时间长,MRI容易移动人工制品,更不用说对MRI检查费用相对较高的不利贡献了。在过去几十年里,多项研究侧重于开发物理和后处理方法,以加速购买MRI扫描。但这两种方法迄今都单独处理。另一方面,最近光学计算成像工程显示,数据采集和图像重建计划同时以学习为基础设计越来越成功。这种计划已经显示出相当大的有效性,导致获取时间大大缩短,图像重建的质量也得到改善。由于这一初步成功,我们提出了一种新的方法,用于学习同步获取和重建MRI扫描的最佳办法,同时进行优化,同时处理数据采集的时间效率和由此而进行重建的质量。我们从实际价值的角度出发,这些办法以普通空间轨迹为基础,以最大效率的形式对数据采集和图像重建的质量进行了编码。这些方法,其与磁共振前期序列要求一起,以固定的磁级级变平结构要求为固定的。

0
下载
关闭预览

相关内容

最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
专知会员服务
101+阅读 · 2020年7月16日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
6+阅读 · 2018年11月29日
Arxiv
5+阅读 · 2018年1月17日
VIP会员
相关VIP内容
最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
专知会员服务
101+阅读 · 2020年7月16日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员